求偏导数 z=(1+xy)^y 求分别对x y的偏导数,
展开全部
z=(1+xy)^y
z=e^[y*ln(1+xy)]
dz=e^[y*ln(1+xy)]*{dy*ln(1+xy)+y*[1/(1+xy)]*[ydx+xdy]}
dz=(1+xy)^y*[ln(1+xy)+xy/(1+xy)]dy+(1+xy)^y*y^2/(1+xy)dx
所以:
对x的偏导数为:(1+xy)^y*y^2/(1+xy)
对y的偏导数为:(1+xy)^y*[ln(1+xy)+xy/(1+xy)]
z=e^[y*ln(1+xy)]
dz=e^[y*ln(1+xy)]*{dy*ln(1+xy)+y*[1/(1+xy)]*[ydx+xdy]}
dz=(1+xy)^y*[ln(1+xy)+xy/(1+xy)]dy+(1+xy)^y*y^2/(1+xy)dx
所以:
对x的偏导数为:(1+xy)^y*y^2/(1+xy)
对y的偏导数为:(1+xy)^y*[ln(1+xy)+xy/(1+xy)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询