已知函数f(x)的周期为4,且等式f(2+x)=f(2-x),对一切x∈R成立,求证:f(x)为偶函数

已知函数f(x)的周期为4,且等式f(2+x)=f(2-x),对一切x∈R成立,求证:f(x)为偶函数.... 已知函数f(x)的周期为4,且等式f(2+x)=f(2-x),对一切x∈R成立,求证:f(x)为偶函数. 展开
 我来答
匡仲俊
2014-09-14 · 超过64用户采纳过TA的回答
知道答主
回答量:128
采纳率:100%
帮助的人:58.7万
展开全部
∵函数f(x)的周期为4
∴f(4+x)=f(x)而f(2+x)=f(2-x),对一切x∈R成立
则将x+2代入上式x中得f(4+x)=f(-x)=f(x)
∴f(x)为偶函数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式