(2014?西城区一模)如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形

(2014?西城区一模)如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形... (2014?西城区一模)如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC的长及四边形AOFE的面积. 展开
 我来答
手机用户02680
推荐于2017-09-25 · 超过62用户采纳过TA的回答
知道答主
回答量:116
采纳率:33%
帮助的人:113万
展开全部
解答:(1)证明:∵CE∥AD且CE=AD,
∴四边形ADCE是平行四边形,
∵在△ABC中,AB=AC,AD平分∠BAC,
∴AD⊥BC(等腰三角形三线合一性质),
∴∠ADC=90°,
∴四边形ADCE是矩形;

(2)解:∵△ABC是等边三角形,边长为4,
∴AC=4,∠DAC=30°,
∴∠ACE=30°,AE=2,CE=2
3

∵四边形ADCE为矩形,
∴OC=OA=2,
∵CF=CO,
∴CF=2,
过O作OH⊥CE于H,
∴OH=
1
2
OC=1,
∴S四边形AOFE=S△AEC-S△COF=
1
2
×2×2
3
-
1
2
×2×1=2
3
-1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式