设a>b>0,求a2+16/(b(a-b))的最小值
1个回答
展开全部
a>b>0,即 a>0,a-b>0.于是 b(a-b)≤[(b+a-b)/2]^2 = a^2/4 (当且仅当 b = a-b = a/2 时取等号),故 16/b(a-b)≥16/(a^2/4 )= 64/a^2,则 a^2 + 16/b(a-b)≥a^2 + 64/a^2 ≥ 2* 根号下(a^2*64/a^2)= 16 (当且仅当 a^...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-08-05 广告
2024-08-05 广告
作为富港检测技术(东莞)有限公司的工作人员,关于ISTA 1A、2A及3A的区别及测试项目简述如下:ISTA 1A是非模拟集中性能试验,主要进行固定位移振动和冲击测试,针对不超过68kg的包装件。ISTA 2A则在此基础上增加了部分模拟性能...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询