如图 p为三角形abc内任意一点,求证:PA+PB+PC_2/1(AB+BC+AC)

 我来答
惠企百科
2022-12-11 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

PA+PB>AB, PA+PC>AC, PB+PC>BC

三式相加2(PA+PB+PC)>AB+BC+AC

所以PA+PB+PC>(AB+BC+AC)/2

三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。

常见的三角形按边分有普通三角形(三条边都不相等),等腰三仿卖角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)。

按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

扩展资料:

几何证明方法:

反证法

反证法是一种古老的证明方法,其氏枯思想为:欲证明某命题是假命题,则反过来假设该命题为真。在这种情况下,若能通过正确有效的推理导致逻辑上的矛盾,又或者与某个事实或公理相悖,则能证明原来的命题为假。

无矛盾律和排中律是反证法的逻辑基础。反证法的好处是在反过来假设该命题为真的同时,等于多了一个已知条件,这样对题目的证明常有帮助。

数学归纳法

数学归纳法是一种证明可数无穷个命题的技巧。欲证明以自然数n编号的一串命题,先证明命题1成立,并证明当命题p(n)成立时命题p(n+1)也成立,则对所有的命题都成立。

在皮亚诺公理系统中,自然数集合的公理化定义就包括了数学归纳法。数学归纳法有不少变体,比如从0以外的自然数开始归纳,证明当命题对小于等于n的自然数成立时命题p(n+1)也成立,反向归纳法,递降归纳法等等。

广义上的数学归纳法也可以用于证明一般良基结构,例如集合论中的树。另外,超限归纳法提供了一种处理不可数无穷个命备核逗题的技巧,是数学归纳法的推广。

参考资料来源:百度百科-几何证明

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式