收敛数列的保号性,用来干什么?
1个回答
展开全部
1、收敛数列的保号性是用来判断未知数大小的;
2、设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a;
3、如果数列Xn收敛,每个收敛的数列只有一个极限。
扩展资料:
收敛数列介绍:
收敛数列不一定要是无穷数列,只不过有穷数列讨论收敛性是没有意义的,因为有穷数列是可列的N项,既然所有的项都可以用一个确定的数表示,那么肯定是收敛的,也就没有讨论收敛性的必要了1,2,3,4和5,5,5,5都是收敛的
设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界不一定收敛。数列发散不一定无界。
参考资料来源:百度百科-收敛数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询