地图上著名的数学问题是什么
1个回答
展开全部
地图上著名的数学问题是“四色问题”
19世纪中期,一位欧洲学生在给地图着色时,发现了一个十分奇怪而有趣的现象,那就是无论多么复杂的地图,只用四种颜色就能使得两个相邻地区的颜色不同。他把这种发现告诉了英国当时著名的数学家摩尔根,摩尔根对此很感兴趣,想用数学的方法给出证明,可是无论如何也证不出来,于是这个问题后来便成为世界数学史上的名题和难题,许多数学家都争着去证明它。
到了20世纪70年代,美国数学家阿沛尔和哈肯,用电子计算机,对“四色问题”进行了数学归纳法的证明。他们假设:若一个图不能够嵌入一个不可能四着色的图里面,那么这个图一定是可以四着色的。于是他们两人从十万多张不同的地图中挑选出近两千多张输入电子计算机,对每一张地图都使用了二十万种可能的着色方法,作出了两百亿个逻辑判定,经过一千二百多个小时,终于在1976年证明出来,从此困绕数学界多年的“四色问题”得到最终解决。 “四色问题”的圆满解决,为人类解决各种各样的问题提供了方法论,极大地丰富了数学理论和数学方法,开拓了人类运用电子计算机的新领域,这些成果广泛地应用到人类的生产和生活的方方面面,极大地推动了数学这门学科在生产和实践上的广泛应用。
19世纪中期,一位欧洲学生在给地图着色时,发现了一个十分奇怪而有趣的现象,那就是无论多么复杂的地图,只用四种颜色就能使得两个相邻地区的颜色不同。他把这种发现告诉了英国当时著名的数学家摩尔根,摩尔根对此很感兴趣,想用数学的方法给出证明,可是无论如何也证不出来,于是这个问题后来便成为世界数学史上的名题和难题,许多数学家都争着去证明它。
到了20世纪70年代,美国数学家阿沛尔和哈肯,用电子计算机,对“四色问题”进行了数学归纳法的证明。他们假设:若一个图不能够嵌入一个不可能四着色的图里面,那么这个图一定是可以四着色的。于是他们两人从十万多张不同的地图中挑选出近两千多张输入电子计算机,对每一张地图都使用了二十万种可能的着色方法,作出了两百亿个逻辑判定,经过一千二百多个小时,终于在1976年证明出来,从此困绕数学界多年的“四色问题”得到最终解决。 “四色问题”的圆满解决,为人类解决各种各样的问题提供了方法论,极大地丰富了数学理论和数学方法,开拓了人类运用电子计算机的新领域,这些成果广泛地应用到人类的生产和生活的方方面面,极大地推动了数学这门学科在生产和实践上的广泛应用。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询