集合{1,2}的子集共有()个?
1个回答
展开全部
集合{1,2}的子集共有4个。
子集:{},{1},{2},{1,2},真子集:{},{1},{2}。
子集:子集是一个数学概念,如果集合A的任意一个元素都是集合B的元素(任意a∈A则a∈B),那么集合A称为集合B的子集。谈起子集,特别要注意的是空集。记住空集是任何集合的子集,而不是任何集合的真子集,如空集就不是空集的真子集,因为真子集的定义,如果A真包含于B,那么至少存在一个元素属于B,却不属于A,所以空集不符合。故空集是任何非空集合的子集。
集合在数学领域具有无可比拟的特殊重要性。
集合:
集合(简称集)是数学中一个基本概念,由康托尔提出。它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。最简单的说法,即是在最原始的集合论,朴素集合论中的定义,集合就是"一堆东西"。集合里的"东西",叫作元素。若x是集合A的元素,则记作x∈A。
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。现代数学还用"公理"来规定集合。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询