2020-03-26
9×4×15
=9×(4×15) (运用乘法结合律使计算简便)
=9×60
=540
扩展:
加法
编辑
加法的意义
将两个或者两个以上的数、量合并成一个数、量的计算叫加法。(如:a+b=c)
加法交换律
两个数相加,交换加数的位置,和不变。 a+b=b+a
加法结合律
三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 (a+b)+c=a+(b+c)
减法
编辑
减法的意义
从一个数量中减去另一个数量的运算叫做减法。
减法结合律
一个数连续减去两个数,可以先把后两个数相加,再相
减。a-b-c=a-(b+c)
减法的性质
减去一个数,等于加这个数的相反数。a-b=a+(-b)
减去一个数再加上一个数,等于减去这两个数的差。a-b+c=a-(b-c)
乘法
编辑
乘法的意义
求几个相同加数的和的简便运算叫做乘法。
乘法交换律
两个数相乘,交换因数的位置,积不变。ab=ba
乘法结合律
三个数相乘,可以先乘前两个数,或者先乘后两个数,积不变。 (ab)c=a(bc)
分配律
分配律是乘法运算的一种简便运算,可用于分数、小数中。
主要公式为(a+b)c=ac+bc。两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加,积不变,这叫做乘法分配律。
分配律的反用:
35×37+65×37 =37×(35+65) =37×100 =3700
除法
编辑
除法的意义
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
除法的性质
商不变性质:被除数和除数同时扩大或缩小相同的倍数,(0除外),商不变。
连续除去两个数,等于除去这两个数的积。a÷b÷c=a÷(b×c)
分数
编辑
分数乘整数的计算法则
整数和分子相乘的积作分子,分母不变。
分数乘分数的计算法则
分子乘分子的积作分子,分母乘分母的积作分母。
分数除法的计算法则
除以一个不为0的数,等于乘这个数的倒数。
分数乘法的意义
分数乘法的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
分数乘分数的意义
求一个数的几分之几是多少。
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
小数
编辑
小数的意义
可从分数的意义着手,分数的意义可从子分割及合成活动来解释,当一个整体(指基准量)被等分后,在集聚其中一部份的量称为「分量」,而「分数」就是用来表示或记录这个「分量」。例如:2/5是指一个整数被分成五等分后,集聚其中二分的「分量」。当整体被分成十等分、百等分、千等分……等时,此时的分量,就使用另外一种纪录的方法-小数。例如1/10记成0.1、2/100记成0.02、5/1000记成0.005……等。其中的「.」称之为小数点,用以分隔整数部分与无法构成整数的小数部分。整数非0者称为带小数,若为0则称纯小数。由此可知,小数的意义是分数意义的一环。
小数的基本性质
小数的末尾添上“0”或去掉“0”,小数的大小不变。
——百度百科网页链接
=9×4×5×3
=9×(4×5×3)
=9×(20×3)
=9×60
=540
广告 您可能关注的内容 |