常用的函数的麦克劳林级数如下:
展开全部
常用的函数的麦克劳林级数如下:
麦克劳林级数(Maclaurin series)是函数在x=0处的泰勒级数,它是牛顿(I.Newton)的学生麦克劳林(C.Maclaurin)于1742年给出的,用来证明局部极值的充分条件,他自己说明这是泰勒级数的特例,但后人却加了麦克劳林级数这个名称。
扩展资料:
麦克劳林级数定理:
设函数f(x)的麦克劳林级数的收敛半径R>0,当n→∞时,如果函数f(x)在任一固定点x处的n阶导数f(n)(x)有界,则函数f(x)在收敛区间(-R,R)内能展开成麦克劳林级数。
利用麦克劳林级数展开函数,需要求高阶导数,比较麻烦,如果能利用已知函数的展开式,根据幂级数在收敛域内的性质,将所给的函数展开成幂级数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询