(2011?江苏二模)如图,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中点,E为AB的中点,F是C
(2011?江苏二模)如图,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中点,E为AB的中点,F是C1C上一点,且CF=2a.(1)...
(2011?江苏二模)如图,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中点,E为AB的中点,F是C1C上一点,且CF=2a.(1)求证:C1E∥平面ADF;(2)试在BB1上找一点G,使得CG⊥平面ADF;(3)求三棱锥D-AB1F的体积.
展开
1个回答
展开全部
解答:证明:(1)∵AB=AC,D为BC的中点
∵E为AB的中点,连接CE交AD于O,连接FO,
∴
=
=
∴FO∥EC1(2分)
∵FO?平面AFD,C1E?平面AFD(4分)
∴C1E∥平面AFD(5分)
(2)在平面C1CBB1内,过C作CG⊥DF,交BB1于G
在△RtFCD 和△RtCBG中FC=CB,∠CFD=∠BCG
∴Rt△FCD≌Rt△CBG(6分)
而AD⊥BC,CC1⊥AD且CC1∩BC=C
∴AD⊥平面C1CBB1(8分)
∵CG?平面C1CBB1
∴AD⊥CG,
∵CG⊥DF,AD∩FD=D
∴CG⊥平面ADF
此时BG=CD=a(10分)
(3)AD⊥BCC1B1
∴VD?AFB1=VA?B1FD=
S△FDB1?AD(12分)
=
×
B1F?FD?AD
=
a3(14分)
∵E为AB的中点,连接CE交AD于O,连接FO,
∴
CO |
CE |
CF |
CC1 |
2 |
3 |
∴FO∥EC1(2分)
∵FO?平面AFD,C1E?平面AFD(4分)
∴C1E∥平面AFD(5分)
(2)在平面C1CBB1内,过C作CG⊥DF,交BB1于G
在△RtFCD 和△RtCBG中FC=CB,∠CFD=∠BCG
∴Rt△FCD≌Rt△CBG(6分)
而AD⊥BC,CC1⊥AD且CC1∩BC=C
∴AD⊥平面C1CBB1(8分)
∵CG?平面C1CBB1
∴AD⊥CG,
∵CG⊥DF,AD∩FD=D
∴CG⊥平面ADF
此时BG=CD=a(10分)
(3)AD⊥BCC1B1
∴VD?AFB1=VA?B1FD=
1 |
3 |
=
1 |
3 |
1 |
2 |
=
5
| ||
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询