第三题,要过程!
2个回答
展开全部
(3) 设A(x1,y1)、B(x2,y2)
L:y-2=k(x-0)
y=kx+2
y=1/4x^2+1
1/4x^2+1=kx+2
x^2-4kx=4
(x-2k)^2=4+4k^2
x-2k=±2√(1+k^2)
x=2[k±√(1+k^2)]
x1=2[k-√(1+k^2)]
x2=2[k+√(1+k^2)]
x1+x2=4k
y1=k*2[k-√(1+k^2)]+2
=2[(k^2+1)-√(k^2+1)]
y2=k*2[k+√(1+k^2)]+2
=2[(k^2+1)+√(k^2+1)]
y1+y2=4(k^2+1)
M(x,y)为AB的中点:
x=(x1+x2)/2=2k
k=x/2
y=(y1+y2)/2
=2(k^2+1)
=2[(x/2)^2+1]
=1/2x^2+2
M的轨迹方程:y=1/2x^2+2
L:y-2=k(x-0)
y=kx+2
y=1/4x^2+1
1/4x^2+1=kx+2
x^2-4kx=4
(x-2k)^2=4+4k^2
x-2k=±2√(1+k^2)
x=2[k±√(1+k^2)]
x1=2[k-√(1+k^2)]
x2=2[k+√(1+k^2)]
x1+x2=4k
y1=k*2[k-√(1+k^2)]+2
=2[(k^2+1)-√(k^2+1)]
y2=k*2[k+√(1+k^2)]+2
=2[(k^2+1)+√(k^2+1)]
y1+y2=4(k^2+1)
M(x,y)为AB的中点:
x=(x1+x2)/2=2k
k=x/2
y=(y1+y2)/2
=2(k^2+1)
=2[(x/2)^2+1]
=1/2x^2+2
M的轨迹方程:y=1/2x^2+2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询