已知:如图所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在同一条直线上,连接BE,CD
已知:如图所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在同一条直线上,连接BE,CD,M,N分别为BE,CD的中点,连接AM,...
已知:如图所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在同一条直线上,连接BE,CD,M,N分别为BE,CD的中点,连接AM,AN,MN.(1)求证:BE=CD;(2)求证:△AMN是等腰三角形.
展开
展开全部
证明:(1)∵∠BAC=∠DAE,
∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS),
∴BE=CD;
(2)∵M、N分别为BE、CD的中点,且BE=CD,
∴ME=ND,
∵△ABE≌△ACD,
∴∠AEM=∠ADC,AE=AD,
在△AEM和△ADN中,
,
∴△AEM≌△ADN(SAS),
∴AM=AN,即△AMN为等腰三角形.
∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD,
在△ABE和△ACD中,
|
∴△ABE≌△ACD(SAS),
∴BE=CD;
(2)∵M、N分别为BE、CD的中点,且BE=CD,
∴ME=ND,
∵△ABE≌△ACD,
∴∠AEM=∠ADC,AE=AD,
在△AEM和△ADN中,
|
∴△AEM≌△ADN(SAS),
∴AM=AN,即△AMN为等腰三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询