各位大神求极限,微积分的题
1个回答
展开全部
lim|(x+1)/(x-2)|^(x^2-4)^(1/2)
取对数:
ln|(x+1)/(x-2)|^(x^2-4)^(1/2)
=(x^2-4)^(1/2) *ln|(x+1)/(x-2)|
lim(x^2-4)^(1/2) *ln|(x+1)/(x-2)|
=limln|1+3/(x-2)|/(x^2-4)^(-1/2)
分子ln|1+3/(x-2)|~3/(x-2) 替换分子得:
=lim3/[(x-2)(x^2-4)^(-1/2)]
=lim3(x^2-4)^(1/2) /(x-2)
=lim3 (x+2)^(1/2)/(x-2)^(1/2)
=3
故:limln(|(x+1)/(x-2)|^(x^2-4)^(1/2))=3
故lim|(x+1)/(x-2)|^(x^2-4)^(1/2)=e^3
limsin(sint)/sint
sin(sint)~sint
替换得:
limsint/sint=1
取对数:
ln|(x+1)/(x-2)|^(x^2-4)^(1/2)
=(x^2-4)^(1/2) *ln|(x+1)/(x-2)|
lim(x^2-4)^(1/2) *ln|(x+1)/(x-2)|
=limln|1+3/(x-2)|/(x^2-4)^(-1/2)
分子ln|1+3/(x-2)|~3/(x-2) 替换分子得:
=lim3/[(x-2)(x^2-4)^(-1/2)]
=lim3(x^2-4)^(1/2) /(x-2)
=lim3 (x+2)^(1/2)/(x-2)^(1/2)
=3
故:limln(|(x+1)/(x-2)|^(x^2-4)^(1/2))=3
故lim|(x+1)/(x-2)|^(x^2-4)^(1/2)=e^3
limsin(sint)/sint
sin(sint)~sint
替换得:
limsint/sint=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询