二阶常系数非齐次线性微分方程特解怎么设?

 我来答
教育小百科达人
推荐于2019-09-26 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:467万
展开全部

较常用的几个:

1、Ay''+By'+Cy=e^mx 

特解    y=C(x)e^mx

2、Ay''+By'+Cy=a sinx + bcosx    

特解    y=msinx+nsinx

3、Ay''+By'+Cy= mx+n                 

特解    y=ax

二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。

若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。

扩展资料:

通解=非齐次方程特解+齐次方程通解

对二阶常系数线性非齐次微分方程形式ay''+by'+cy=p(x)

 的特解y*具有形式

y*= 

其中Q(x)是与p(x)同次的多项式,k按α不是特征根、是单特征根或二重特征根(上文有提),依次取0,1或2.

将y*代入方程,比较方程两边x的同次幂的系数(待定系数法),就可确定出Q(x)的系数而得特解y*。

多项式法:

设常系数线性微分方程y''+py'+qy =pm

 (x)e^(λx),其中p,q,λ是常数,pm(x)是x的m次多项式,令y=ze^(λz) ,则方程可化为:

F″(λ)/2!z″+F′(λ)/1!z′+F(λ)z=pm(x) ,这里F(λ)=λ^2+pλ+q为方程对应齐次方程的特征多项式

升阶法:

设y''+p(x)y'+q(x)y=f(x),当f(x)为多项式时,设f(x)=a0x^n+a1x^(n-1)+…+a(n-1)x+an,此时,方程两边同时对x求导n次,得

y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an……

y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)!

y^(n+2)+py^(n+1)+qy^(n)=a0n!

令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。由y^(n+1)与y^n通过倒数第二个方程可得y^(n-1),依次升阶,一直推到方程y''+p(x)y'+q(x)y=f(x),可得到方程的一个特解y(x)。

物声科技2024
2024-10-28 广告
在力学试验过程监测中,北京物声科技有限公司采用高精度传感器与先进的数据采集系统,实时捕捉试验中的力学参数变化。通过实时监测,我们能确保试验数据的准确性和可靠性,及时发现并处理异常情况。我们的监测系统具有高度的稳定性和灵敏度,能够适用于多种复... 点击进入详情页
本回答由物声科技2024提供
baochuankui888
高粉答主

推荐于2019-09-10 · 醉心答题,欢迎关注
知道答主
回答量:60
采纳率:100%
帮助的人:9090
展开全部

较常用的几个:

1、Ay''+By'+Cy=e^mx 

特解    y=C(x)e^mx

2、Ay''+By'+Cy=a sinx + bcosx    

特解    y=msinx+nsinx

3、Ay''+By'+Cy= mx+n                 

特解    y=ax

通解

1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)

2、两根相等的实根:y=(C1+C2x)e^(r1x)

3、一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)

扩展资料:

标准形式   y''+p(x)y'+q(x)y=f(x)

解法

通解=非齐次方程特解+齐次方程通解

对二阶常系数线性非齐次微分方程形式ay''+by'+cy=p(x)  的特解y*具有形式

y*= 其中Q(x)是与p(x)同次的多项式,k按α不是特征根、是单特征根或二重特征根(上文有提),依次取0,1或2.

将y*代入方程,比较方程两边x的同次幂的系数(待定系数法),就可确定出Q(x)的系数而得特解y*。

多项式法:

设常系数线性微分方程y''+py'+qy =pm  (x)e^(λx),其中p,q,λ是常数,pm(x)是x的m次多项式,令y=ze^(λz) 。

则方程可化为:F″(λ)/2!z″+F′(λ)/1!z′+F(λ)z=pm(x) ,这里F(λ)=λ^2+pλ+q为方程对应齐次方程的特征多项式

升阶法:

设y''+p(x)y'+q(x)y=f(x),当f(x)为多项式时,设f(x)=a0x^n+a1x^(n-1)+…+a(n-1)x+an,此时,方程两边同时对x求导n次,得

y'''+p(x)y''+q(x)y'=a0x^n+a1x^(n-1)+…+a(n-1)x+an……

y^(n+1)+py^(n)+qy^(n-1)=a0n!x+a1(n-1)!

y^(n+2)+py^(n+1)+qy^(n)=a0n!

令y^n=a0n!/q(q≠0),此时,y^(n+2)=y^(n+1)=0。

参考资料:百度百科——二阶常系数线性微分方程

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
daxuedayuwori
推荐于2019-08-01 · TA获得超过302个赞
知道答主
回答量:124
采纳率:100%
帮助的人:13.8万
展开全部
(1)y”+3y’+2y=xe^-x
特解 y*=ax+b(这是错的,最起码得有个e^-x吧?)
(2)y”+3y’+2y=(x² + 1)e^-x
特解y*=x(Ax²+Bx+c)e^-x
-------------------------------
1、xe^-x前的多项式为x,所以设Qm(x)是Qm(x)=ax+b,由于-1是特征方程的单根,所以特解为
y*=x(ax+b)e^(-x)
2、(x²+1)e^-x前的多项式为二次,所以设Qm(x)是Qm(x)=ax²+bx+c,由于-1是特征方程的单根,所以特解为y*=x(ax²+bx+c)e^-x
把特解带入原微分方程,待定系数法求出参数a、b、c。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
中梦蔼0n
高粉答主

2019-11-16 · 说的都是干货,快来关注
知道答主
回答量:5.8万
采纳率:4%
帮助的人:2809万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式