《点到直线的距离公式》推导

 我来答
大沈他次苹0B
2022-07-19 · TA获得超过7321个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:177万
展开全部
点P到直线l的距离,就是由点P向直线l作垂线,垂足为Q,线段PQ的长度就是点P到直线l的距离。

一、推导点到直线的距离公式:坐标方法、向量方法、其他方法。

1.用坐标方法推导点到直线的距离公式。

方案一:(摘自教科书)

求过P与直线l垂直的直线,且与直线l交于点Q。然后,求出两直线交点Q的坐标。最后,利用两点间距离公式求出线段PQ的长度。这是最常见的一种方法,也是基本方法。

这种方法思路自然,但运算量较大。

方案二:

教科书在思考中给出了引起复杂运算原因的基础上,简化运算过程,采用“设而不求”的策略。

“设而不求”,引导学生,“设”的是什么。“求”的是什么。

用含有所设未知数的式子表达出来,进而得到整个式子的结果,而不是式子中具体未知数的结果。

2.用向量方法推导点到直线的距离公式

《普通高中教科书数学选择性必修第一册》第一章中,用空间向量求点到直线距离和点到平面距离都应用了投影向量。这为本节课用向量方法推到平面上,点到直线距离公式提供了启示。

方案一:

此种方法模仿教材33页,应用向量方法,求点到直线距离公式。此种方法采用直线的任意方向向量

方案二:

此种方法模仿教材33页,应用向量方法,求点到直线距离公式。此种方法采用直线单位方向向量。

方案三:(教材所采用的方法)

此种方法利用与直线l的方向垂直单位向量,一步到位,省去很多不必要的麻烦。不过求与直线l的方向垂直单位向量,是教学过程中一个难点。

3.其他推导方法

为了得到PQ,考虑与坐标轴平行的线段,把它转化为与坐标轴平行的线段关系。

这种方法充分借助面积,直角三角形面积两种不同表示方法。此种方法思路清晰,运算量依然很大,包括求交点的坐标,两条直角边的长度,斜边的长度等。

二、例题教学

解法1:

教科书第77页例6,求三角形面积,教材采用求出一边的长度,然后利用点到直线距离公式求出相应边的高,然后利用三角形面积公式求得三角形面积。

思路清晰,建议放手让学生去做。

解法2:

这道题的第二种解法,充分运用图形的几何性质,通过图形的割补,求得三角形的面积。

解法3:

利用两点间距离公式,求出三角形三边长。应用余弦定理,求出一个角的余弦值,进而获得该角正弦值。利用三角形面积公式的一般形式,求得该三角形面积。

这种方法操作比较繁琐,作为知识间的横向联系,可以适当启发学生。

三、教学反思

1.教学时强调将直线化成一般式,然后应用点到直线距离公式,求出点到直线距离。

2.当直线与坐标轴平行(重合)时,学生很少考虑利用图象,通过直观观察获得点到直线的距离。

3.当直线与坐标轴平行(重合)时,个别学生对缺少一个变量感到迷茫。

4.应用点到直线距离公式进行求解运算时,学生能够首先列出点到直线距离公式,然后分别代入进行求解。然而,在实际求解运算过程中,分子绝对值符号,悄无声息的消失了,造成丢解的情况。

5.在研究平面解析几何问题时,有意识地向学生渗透数形结合的思想。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式