已知函数f(x)=2x-a/x(a为实数)的定义域为(0,1】(a为实数) 证明它的单调性.

 我来答
科创17
2022-06-06 · TA获得超过5891个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:173万
展开全部
f(x)=2x-a/x(a为实数)的定义域为(0,1】(a为实数)
令0<x1<x2≤1
f(x2)-f(x1) = 【2x2-a/x2】-【2x1-a/x1】
= 2(x2-x1) + a(1/x1-1/x2)
= 2(x2-x1) + a(x2-x1)/(x1x2)
= (x2-x1)(2x1x2+a)/(x1x2)
∵x1<x2,∴x2-x1>0
∵0<x1<x2,∴x1x2>0
∵0<x1<x2≤1,∴0<x1x2<1
当a≥0时,2x1x2+a>0恒成立,此时f(x2)-f(x1)= (x2-x1)(2x1x2+a)/(x1x2)>0,f(x)在(0,1】单调增;
当a≤-2时,2x1x2+a<0恒成立,此时f(x2)-f(x1)= (x2-x1)(2x1x2+a)/(x1x2)<0,f(x)在(0,1】单调减;
当-2<a<0时,f(x)在(0,1】非单调.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式