佩亚诺型余项的泰勒公式
1个回答
展开全部
佩亚诺余项的泰勒公式可以表示为:f(x)=f(x0)+(x-x0)*f'(x0)/1!+(x-x0)^2*f''(x0)/2!+…+(x-x0)^n*f^(n)(x0)/n!+o((x-x0)^n)而x0→0时,f(x)=f(0)+x*f'(0)/1!+x^2*f''(0)/2!+…+x^n*f^(n)(0)/n!+o(x^n)。
泰勒公式是一个用函数在某点的信息描述其附近取值的公式,得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。
它来自于微积分的泰勒定理,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
泰勒公式是一个用函数在某点的信息描述其附近取值的公式,得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。
它来自于微积分的泰勒定理,如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询