设(x)二阶可导且f(0)=0,F(x)= x ,x*0a,x=0f (1)确定a,使得F(x)在x=0处连续;
(2)对所求a,求F'(x)并讨论F'(x)在x=0处的连续性.
1个回答
关注
展开全部
(1)由题设,F(x)在x=0处连续,则F(0)=0,即a*0=0,故a=0。(2)根据F(x)=x*a,求得F'(x)=a,当x=0时,F'(0)=a,由于a=0,故F'(0)=0,即F'(x)在x=0处连续。
咨询记录 · 回答于2023-01-30
(2)对所求a,求F'(x)并讨论F'(x)在x=0处的连续性.
设(x)二阶可导且f(0)=0,F(x)= x ,x*0a,x=0f
(1)确定a,使得F(x)在x=0处连续;
设(x)二阶可导且f(0)=0,F(x)= x ,x*0a,x=0f
(2)对所求a,求F'(x)并讨论F'(x)在x=0处的连续性.
设(x)二阶可导且f(0)=0,F(x)= x ,x*0a,x=0f
(2)对所求a,求F'(x)并讨论F'(x)在x=0处的连续性.
(1)确定a,使得F(x)在x=0处连续;
设(x)二阶可导且f(0)=0,F(x)= x ,x*0a,x=0f
(2)对所求a,求F'(x)并讨论F'(x)在x=0处的连续性.
(1)确定a,使得F(x)在x=0处连续;
设(x)二阶可导且f(0)=0,F(x)= x ,x*0a,x=0f