变限积分求导公式
1个回答
展开全部
常见类型:
下限为常数,上限为函数类型
第一步:对于这种类型只需将上限函数代入到积分的原函数中去,再对上限函数进行求导。
第二步:对下面的函数进行求导,只需将“X”替换为“t”再进求导即可。
下限为函数,上限为常数类型
第一步:基本类型如下图,需要添加“负号”将下限的函数转换到上限,再按第一种类型进行求导即可。
第二步:题例如下,添加“负号”转换为变上限积分函数求导即可。
上下限均为函数类型
第一步:这种情况需要将其分为两个定积分来求导,因为原函数是连续可导的,所以首先通过“0”将区间[h(x),g(x)]分为[h(x),0]和[0,g(x)]两个区间来进行求导。
第二步:然后将后面的变下限积分求导转换为变上限积分求导。
第三步:接着对两个区间的变上限积分分别求导即可得到下面公式。
第四步:对于这种题,可以直接套公式,也可以自己推导。
总结:
对于变限积分求导,通常将其转换为变上限积分求导,求导时,将上限的变量代入到被积函数中去,再对变量求导即可。
云范文科技
高中数学人教版公式总结大全,点击下载,在线优质资料分享平台,5亿+份热门文档内容,涵盖各种办公模板,合同协议,考试真题,行业资料等,高中数学人教版公式总结大全,可任意编辑打印使用,海量文档资料下载!