数学中!是什么符号

1个回答
钟老师的课堂
2023-05-30 · 超过31用户采纳过TA的回答
知道答主
回答量:119
采纳率:100%
帮助的人:1.7万
展开全部
!在数学里是阶乘符号。一个正整数的阶乘是所有小于及等于该数的正整数的积,并且有0的阶乘为1。
亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
阶乘亦可定义于整个实数(负整数除外),其与伽玛函数的关系为:
n!可质因子分解为,如6!=24×32×51。
扩展资料:
阶乘函数:
一个正整数的阶乘(英语:factorial)是所有小于及等于该数的正整数的积,并且有0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
定义:阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号,是数学术语。
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
亦即n!=1×2×3×...×(n-1)×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
概念:阶乘是基斯顿·卡曼(Christian Kramp,1760~1826)于 1808 年发明的运算符号,是数学术语。
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
计算方法:大于等于1
任何大于等于1 的自然数n 阶乘表示方法:

0的阶乘
0!=1。
定义的必要性
由于正整数的阶乘是一种连乘运算,而0与任何实数相乘的结果都是0。所以用正整数阶乘的定义是无法推广或推导出0!=1的。即在连乘意义下无法解释“0!=1”。
给“0!”下定义只是为了相关公式的表述及运算更方便。

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消