急!!!在三角形ABC中,若acosA=bcosB,试判断三角形的形状
解:∵acosA=bcosB∴a/b=cosB/cosA∵a/sinA=b/sinB=2r∴sinA/sinB=cosB/cosA∴sinAcosA-sinBcosB=0...
解:∵acosA=bcosB
∴a/b=cosB/cosA
∵a/sinA=b/sinB=2r
∴sinA/sinB=cosB/cosA
∴sinAcosA-sinBcosB=0
∴(1/2)×(sin2A-sin2B)=0
∴sin2A=sin2B
∴2A=2B或2A=π-2B
∴A=B 或C=90°
∴三角形是等腰三角形或者是直角三角形
除了这种做法,还有没有别的做法? 展开
∴a/b=cosB/cosA
∵a/sinA=b/sinB=2r
∴sinA/sinB=cosB/cosA
∴sinAcosA-sinBcosB=0
∴(1/2)×(sin2A-sin2B)=0
∴sin2A=sin2B
∴2A=2B或2A=π-2B
∴A=B 或C=90°
∴三角形是等腰三角形或者是直角三角形
除了这种做法,还有没有别的做法? 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询