设函数f(x)=(2x+1)/x [x>0] 数列an满足a1=1,an=f[1/a(n-1)]
1)设Tn=a1a2-a2a3+a3a4-a4a5+……+(-1)ana(n+1),若Tn≥tn^2恒成立,求t的取值范围.2)是否存在以a1为首项,公比为q[0<q<5...
1) 设Tn=a1a2-a2a3+a3a4-a4a5+……+(-1)ana(n+1),若Tn≥tn^2恒成立,求t的取值范围.
2) 是否存在以a1为首项,公比为q[0<q<5] 的等比数列{a(nk)}中每一项都是数列{an}中不同的项,若存在求出所有满足条件的数列的通项公式.
万分感谢.!! 展开
2) 是否存在以a1为首项,公比为q[0<q<5] 的等比数列{a(nk)}中每一项都是数列{an}中不同的项,若存在求出所有满足条件的数列的通项公式.
万分感谢.!! 展开
展开全部
1)根据条件,可以知道f(x)=(2x+1)/x=2+(1/x)
an=f[1/a(n-1)]=2+a(n-1)
所以{an}是以2为公差的等差数列
容易求得an=2n-1 这是一个奇数数列
根据Tn的公式,可以知道在Tn公式中,n为偶数,因为最后一项为负数,
所以Tn可以变形为:
Tn=a2(a1-a3)+a4(a3-a5)+……+an[a(n-1)-a(n+1)]
=-4a2-4a4-4a6-……-4an
=-4(a2+a4+a6+……an)
=-4[n/4(a2+an)]=-n(a2+an)
把a2=3,an=2n-1代入得到
Tn=-2n(n+1)
要使Tn≥tn^2恒成立,
即-2n(n+1)≥tn^2恒成立
即-2(n+1))≥tn
t<=-2-n/2
上面已说n为偶数,所以n/2>=1
所以t<=-2-1=-3
即t<=-3
2)因为an为整数,因此假如ank存在,那么q必为整数,所以q只能取1、2、3、4
q=1为常数列,排除
q=2或q=4所得数列为偶数,也排除,
q=3所得数列为bm=3^(m-1) (m=nk)
bm必为奇数
因此bm符合条件。
an=f[1/a(n-1)]=2+a(n-1)
所以{an}是以2为公差的等差数列
容易求得an=2n-1 这是一个奇数数列
根据Tn的公式,可以知道在Tn公式中,n为偶数,因为最后一项为负数,
所以Tn可以变形为:
Tn=a2(a1-a3)+a4(a3-a5)+……+an[a(n-1)-a(n+1)]
=-4a2-4a4-4a6-……-4an
=-4(a2+a4+a6+……an)
=-4[n/4(a2+an)]=-n(a2+an)
把a2=3,an=2n-1代入得到
Tn=-2n(n+1)
要使Tn≥tn^2恒成立,
即-2n(n+1)≥tn^2恒成立
即-2(n+1))≥tn
t<=-2-n/2
上面已说n为偶数,所以n/2>=1
所以t<=-2-1=-3
即t<=-3
2)因为an为整数,因此假如ank存在,那么q必为整数,所以q只能取1、2、3、4
q=1为常数列,排除
q=2或q=4所得数列为偶数,也排除,
q=3所得数列为bm=3^(m-1) (m=nk)
bm必为奇数
因此bm符合条件。
追问
非常抱歉,最后一项是 (-1) ^(n-1) 知道要分奇偶数 但是不知道怎样写 = =!
追答
好吧,既然有 (-1) ^(n-1),就得分开考虑,n是偶数,就是我上面写的, 如果n为奇数,Tn=-4[a2+a4+……a(n-1)]+ana(n+1) 变形过程就不再写了,可以得到Tn=2n^2+2n-1 所以就是要求2n^2+2n-1>=tn^2恒成立 变形(2-t)n^2+2n-1>=0要恒成立 当n为偶数时,已要求t<=-3, 该条件在n为奇数时也是恒成立,所以还是t<=-3
2014-01-27
展开全部
an 1=an/(2an 1) 1/an 1=(2an 1)/2=1/an 2 1/an 1-1/an=2
所以1/an是首项为1,公差为2的等差,1/an=1 2(n-1)=2n-1
2n×1/an=2n(2n-1)=4n^2-2n
所以sn=4(1^2 2^2 ... n^2)-2(1 2 ...n)=4×n(n 1)(2n 1)/6 -n(n 1)=(4n-1)n(n 1)/3
所以1/an是首项为1,公差为2的等差,1/an=1 2(n-1)=2n-1
2n×1/an=2n(2n-1)=4n^2-2n
所以sn=4(1^2 2^2 ... n^2)-2(1 2 ...n)=4×n(n 1)(2n 1)/6 -n(n 1)=(4n-1)n(n 1)/3
追问
请问您是回答哪一问呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询