过点P(4,2)作圆x²+y²=4的两条切线,切点分别为A、B,O为坐标原点,求△OAB的外接圆方

过点P(4,2)作圆x²+y²=4的两条切线,切点分别为A、B,O为坐标原点,求△OAB的外接圆方程。... 过点P(4,2)作圆x²+y²=4的两条切线,切点分别为A、B,O为坐标原点,求△OAB的外接圆方程。 展开
十三贝勒爷
2014-06-16 · 知道合伙人互联网行家
十三贝勒爷
知道合伙人互联网行家
采纳数:21665 获赞数:309608
擅长回答问题,帮网友解答困惑,一颗乐于助人的心永远不变!

向TA提问 私信TA
展开全部

解析:

PS:希望我的回答能够帮助你~~~~请采纳是我对我的信任和肯定。。。

百度网友86c058d
2014-06-16 · TA获得超过9270个赞
知道大有可为答主
回答量:2264
采纳率:88%
帮助的人:510万
展开全部
先求切点。设切点Q(x,y),则由于切线垂直于过切点的半径,应用勾股定理:PQ^2+OQ^2=OP^2,即(x-4)^2+(y-2)^2+x^2+y^2=20,化简得:x^2-4x+y^2-2y=0,又Q在圆周上,即x^2+y^2=4,代入方程1并化简得:y=2-2x,代入圆方程并解得:x1=0,x2=8/5。
于是,不妨设A(0,2)、B(8/5,-6/5),又O(0,0)。
求圆心:圆心为OA中垂线和OB中垂线的交点。
OA中垂线:显然为y=1。
OB中垂线:
OB中点:M(4/5,-3/5),直线OB斜率:k=-3/4,故OB中垂线斜率k'=-1/k=4/3。
列直线点斜式方程:y+3/5=4/3(x-4/5),化简得:3y+5=4x,与y=1联立方程组得:x=2,y=1

故圆心O'(2,1),由于过原点,故半径平方r^2=O'O^2=5,故方程:(x-2)^2+(y-1)^2=5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式