1^2+2^2+3^2+4^2+....+n^2 的计算公式是什么

 我来答
颜代7W
高粉答主

2019-07-26 · 每个回答都超有意思的
知道小有建树答主
回答量:505
采纳率:100%
帮助的人:12.4万
展开全部

1^2+2^2+3^2+4^2+....+n^2 的计算公式是n*(n+1)*(2n+1)/6。

解:1、因为当n=1时,1^2=1=1*(1+1)*(2x1+1)/6=1,

2、当n=2时,1^2+2^2=5=2*(2+1)*(2x2+1)/6=5,

3、设n=k(k≥2,k为正数)时,1^2+2^2+3^2+...+k^2=k*(k+1)*(2k+1)/6成立。

那么当n=k+1时,

1^2+2^2+3^2+...+k^2+(k+1)^2=k*(k+1)*(2k+1)/6+(k+1)^2,

而k*(k+1)*(2k+1)/6+(k+1)^2

=(k+1)*(k*(2k+1)/6+(K+1))

=(K+1)*(k*(2k+1)+6(k+1))/6

=1/6*(k+1)*(2k^2+7k+6)

=1/6*(k+1)*(2K+3)*(K+2)

=(k+1)*((K+1)+1)*(2(K+1)+1)/6,

即1^2+2^2+3^2+...+k^2+(k+1)^2=(k+1)*((K+1)+1)*(2(K+1)+1)/6也满是公式。

所以根据数学归纳法,对一切自然数n有1^2+2^2+3^2+4^2+....+n^2 的计算公式是n*(n+1)*(2n+1)/6。

扩展资料:

数列求和的方法

1、公式法

(1)等差数列求和公式:Sn=1/2*n(a1+an)=d/2*n+(a1-d/2)*n

(2)等比数列求和公式:Sn=na1(q=1)、Sn=a1*(1-q^n)/(1-q)(q≠1)

(3)自然数求和公式:(1+2+3+...+n)=n(n+1)/2

2、错位相减法

3、倒序相加法

4、裂项相消法

(1)1/(n*(n+1))=1/n-1/(n+1)

(2)1/((2n-1)*(2n+1))=1/2(1/(2n-1)-1/(2n+1))

参考资料来源:百度百科-数列求和

你爱我妈呀
2019-07-24 · TA获得超过8.6万个赞
知道小有建树答主
回答量:686
采纳率:100%
帮助的人:26万
展开全部

S=(1/6)n(n+1)(2n+1)。

推导过程:

设S=1^2+2^2+....+n^2

(n+1)^3-n^3 = 3n^2+3n+1

n^3-(n-1)^3 = 3(n-1)^2+3(n-1)+1

...

2^3-1^3 = 3*1^2+3*1+1

把上面n个式子相加得:(n+1)^3-1 = 3* [1^2+2^2+...+n^2] +3*[1+2+....+n] +n

所以S= (1/3)*[(n+1)^3-1-n-(1/2)*n(n+1)] = (1/6)n(n+1)(2n+1)

扩展资料:

数列求和方法

1、分组求和:把一个数列分成几个可以直接求和的数列。

2、拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和。

3、错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和。

4、倒序相加:例如,等差数列前n项和公式的推导。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
赵芷曼
推荐于2017-09-20 · TA获得超过117个赞
知道答主
回答量:63
采纳率:0%
帮助的人:52.9万
展开全部
设S=1^2+2^2+....+n^2

(n+1)^3-n^3 = 3n^2+3n+1
n^3-(n-1)^3 = 3(n-1)^2+3(n-1)+1
...
..
...

2^3-1^3 = 3*1^2+3*1+1

把上面n个式子相加得:(n+1)^3-1 = 3* [1^2+2^2+...+n^2] +3*[1+2+....+n] +n

所以S= (1/3)*[(n+1)^3-1-n-(1/2)*n(n+1)] = (1/6)n(n+1)(2n+1)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-05-02 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1544万
展开全部

简单计算一下即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yuanyings
2019-07-17 · TA获得超过200个赞
知道答主
回答量:16
采纳率:0%
帮助的人:1.1万
展开全部
设S=1^2+2^2+....+n^2 (n+1)^3-n^3 = 3n^2+3n+1 n^3-(n-1)^3 = 3(n-1)^2+3(n-1)+1 ... .. ... 2^3-1^3 = 3*1^2+3*1+1 把上面n个式子相加得:(n+1)^3-1 = 3* [1^2+2^2+...+n^2] +3*[1+2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式