计算机二进制怎么计算?
从右往左数,把数字所在位置-1得到的数做底数为'2'的指数.再乘以相应位置上的数'0'或'1'.最后全部加起来,就是你给出的二进制的十进制表示。
例如:
0001 = 2^3 x 0 + 2^2 x 0 + 2^1 x 0 + 2^0 x 1 = 1
0010 = 2^3 x 0 + 2^2 x 0 + 2^1 x 1 + 2^0 x 0 = 2
0100 = 2^3 x 0 + 2^2 x 1 + 2^1 x 0 + 2^0 x 0 = 4
1000 = 2^3 x 1 + 2^2 x 0 + 2^1 x 0 + 2^0 x 0 = 8
0110 = 2^3 x 0 + 2^2 x 1 + 2^1 x 1 + 2^0 x 0 = 6二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用1来表示“开”,0来表示“关”。
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统。
数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。
20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。
二进制和十六进制,八进制一样,都以二的幂来进位的。
主要特点
优点
数字装置简单可靠,所用元件少;
只有两个数码0和1,因此它的每一位数都可用任何具有两个不同稳定状态的元件来表示;
基本运算规则简单,运算操作方便。
缺点
用二进制表示一个数时,位数多。因此实际使用中多采用送入数字系统前用十进制,送入机器后再转换成二进制数,让数字系统进行运算,运算结束后再将二进制转换为十进制供人们阅读。
二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。
06如何快速的将二进制转换成十进制
二进制:就是用来数值表示的,意义跟我们平时用的十进制一样。比如十进制(1)对应二进制(1),十进制(2)对应二进制(10)。二进制提出的目的是为了让计算机更好的理解和计算,所有的数值由(0,1组合而成),十进制的所有数值由(0,1,2,3,4,5,6,7,8,9组合而成)
二进制计算
二进制转十进制:比如二进制(10)转化成十进制:1x2^1 + 0x2^0 = 2(十进制)。乘2取整法
十进制转二进制:除2取余法。如十进制(3) : 3除以2余1,所以对应的二进制(1