已知函数f(x)=1/3x^3-1/2x^2+cx+d有极值.求c的取值范围 20
3个回答
展开全部
⑴.∵f(x)有极值
∴f¹(x)=x²-x+c=0有两解
Δ=1-4c>0
解得 c<1/4
⑵∵f(x)在x=2处取得极值
∴f¹(2)=4-2+c=0 得 c=-2
则 f(x)=1/3x^3-1/2x^2-2x+d
f(x)<1/6d^2+2d 恒成立
即1/3x^3-1/2x^2-2x+d<1/6d^2+2d
1/3x^3-1/2x^2-2x<1/6d²+d 恒成立
令g(x)=1/3x^3-1/2x^2-2x
g¹(x)=x²-x-2=0
解得 x=-1 或 x=2 (舍)
当x<-1时 g¹(x)>0
当-1<x<0时 g¹(x)<0
所以g(x)在区间(-∞,-1]上单调增加,在[-1,0)单调减少,故g(x)在x=-1处取得最大值g(-1)=-1/3-1/2+2=7/6
∵1/3x^3-1/2x^2-2x<1/6²+d 恒成立
∴1/6d²+d>g(-1)=7/6
d²+6d-7>0
解得 d<-7 或 d>1
d的取值范围为(-∞,-7)∪(1,+∞)
∴f¹(x)=x²-x+c=0有两解
Δ=1-4c>0
解得 c<1/4
⑵∵f(x)在x=2处取得极值
∴f¹(2)=4-2+c=0 得 c=-2
则 f(x)=1/3x^3-1/2x^2-2x+d
f(x)<1/6d^2+2d 恒成立
即1/3x^3-1/2x^2-2x+d<1/6d^2+2d
1/3x^3-1/2x^2-2x<1/6d²+d 恒成立
令g(x)=1/3x^3-1/2x^2-2x
g¹(x)=x²-x-2=0
解得 x=-1 或 x=2 (舍)
当x<-1时 g¹(x)>0
当-1<x<0时 g¹(x)<0
所以g(x)在区间(-∞,-1]上单调增加,在[-1,0)单调减少,故g(x)在x=-1处取得最大值g(-1)=-1/3-1/2+2=7/6
∵1/3x^3-1/2x^2-2x<1/6²+d 恒成立
∴1/6d²+d>g(-1)=7/6
d²+6d-7>0
解得 d<-7 或 d>1
d的取值范围为(-∞,-7)∪(1,+∞)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询