运筹学里怎么判断解的情况?
1个回答
展开全部
一般来说没有可行解的情况是不存在的,因为一般情况下Xi给定都是大于0的,几个约束条件之间如果没有明显的系数都大,约束右端的数值却比较小的这种情况,那么就一定是有解的。
你说的这种大概是多次迭代,可行基又返回到初始可行基的情况,这种属于循环,可以用bland方法,摄动法,和辞典序法来消除循环的影响。
06.30修改
你说的那种情况还是循环的啊,把b变了,朗姆达又不符合了,变完了检验数,b又不符合了。这时候你试着用对偶做一下,如果依然循环(这种情况非常非常的少,至少我在题里没有见过),那就试试我说的那个方法吧,不过好像都是用计算机来进行运算的,很少有教材详细涉及了。
你说的这种大概是多次迭代,可行基又返回到初始可行基的情况,这种属于循环,可以用bland方法,摄动法,和辞典序法来消除循环的影响。
06.30修改
你说的那种情况还是循环的啊,把b变了,朗姆达又不符合了,变完了检验数,b又不符合了。这时候你试着用对偶做一下,如果依然循环(这种情况非常非常的少,至少我在题里没有见过),那就试试我说的那个方法吧,不过好像都是用计算机来进行运算的,很少有教材详细涉及了。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询