泰勒公式如何求
泰勒公式:f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)^2+...+f(n)(a)/n!*(x-a)^n
现在f(x)=1/(1-x),求导得到f'(x)= -1/(1-x)^2 *(-1)=1/(1-x)^2,f''(x)= -2/(1-x)^3 *(-1)=2/(1-x)^3,以此类推得到fn(x)=n! /(1-x)^(n+1)
代入a=0,那么f(0)=1,f'(0)=1,fn(0)=n!
所以解得f(x)=1+1!/1! *x+2!/2! *x^2+...+n!/n! *x^n
扩展资料
泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
泰勒定理开创了有限差分理论,使任何单变量函数都可展成幂级数;同时亦使泰勒成了有限差分理论的奠基者。泰勒于书中还讨论了微积分对一系列物理问题之应用,其中以有关弦的横向振动之结果尤为重要。他透过求解方程导出了基本频率公式,开创了研究弦振问题之先河。
参考资料百度百科-泰勒公式