设a,b,c为实数,且ab>0,证明:方程 aX^3+bX+c=0最多只有一个实根

 我来答
世纪网络17
2022-08-05 · TA获得超过5929个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:140万
展开全部
设函数y=aX^3+bX+c. 对x求导,得到:y'=3aX^2+b. 若ab>0,则y'恒正,或恒负,即原函数单调递增或单调递减.又因为原函数在x趋向正无穷和趋向负无穷时,分别趋向正负无穷,即存在两个自变量取值,使函数值异号.所以,原方程y=aX^3+bX+c=0有且只有一个实根.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式