系统的稳定性是指
系统的稳定性是指
系统的稳定性是指,通常稳定性是指测量仪器的计量特性随时间不变化的能力。若稳定性不是对时间而言,而是对其他量而言,则应该明确说明。下面来看看系统的稳定性是指什么
系统的稳定性是指1
系统稳定性是指系统要素在外界影响下表现出的某种稳定状态。其含义大致有以下三类:
(1)、外界温度的、机械的以及其他的各种变化,不至于对系统的状态发生显著的影响。
(2)、系统受到某种干扰而偏离正常状态,当干扰消除后,能恢复其正常状态,则系统是稳定的;相反,如果系统一旦偏离其正常状态,再也不能恢复到正常状态,而且偏离越来越大,则系统是不稳定的。
(3)、系统自动发生或容易发生的总趋势,如果一个系统能自动地趋向某一状态,就可以说,这一状态比原来的状态更稳定。
扩展资料:
如果系统受到扰动后,不论它的初始偏差多大,都能以足够的精度恢复到初始平衡状态,这种系统就叫大范围内渐近稳定的系统。
如果系统受到扰动后,只有当它的初始偏差小于某一定值才能在取消扰动后恢复初始平衡状态,而当它的初始偏差大于限定值时,就不能恢复到初始平衡状态,这种系统就叫做在小范围内稳定的系统。
系统的稳定性是指2
如何判断系统的稳定性
系统的四个性质即线性、时不变性、因果性和稳定性都很重要,上次王英吉同学问到系统稳定性的判断问题,下面进行进一步的介绍。
对于连续系统和离散系统的判断,教材中的叙述如下:如果连续系统H(s)的极点都在s平面的左半开平面,离散系统H(z)的极点均在z平面的单位圆内,则该系统是稳定的因果系统。
如果系统函数是已知的,那么根据上面的`方法,先求出系统函数的极点,然后根据极点的位置,就可以判断系统的稳定性,于是,问题最后归结为求解一元多次方程的根,即解方程。
吴大正的教材举出一些简单的例子,说明如何判断系统的稳定性,以及当满足系统的稳定性时,一些系统参数应该满足什么条件。但是,当方程是高次的,比如3次、4次等,如果不能进行因式分解而求出方程的根,那么应该怎么办呢?教材没有交代。另一本教材,也是我第一次自学这门课程时所采用的教材,即西电陈生潭等编著的《信号与系统》(第二版,西安电子科技大学出版社,2001年)则介绍了两个重要的准则,即罗斯-霍尔维茨(Routh-Hurwitz)准则和朱里(July)准则。
罗斯-霍尔维茨准则在传统的控制理论课程中都要讲授,它是判别代数方程根的实部特征的一种方法,可以不用解方程就知道方程包含多少个负实部的根。
由于计算机技术的发展,现在用计算机求解高次方程已经很成熟了,因而罗斯-霍尔维茨准则和朱里准则的重要性逐渐降低,很多教材已经不讲这两个准则了。但是,这两个准则曾在历史上有着不可磨灭的功绩,而且难度不大,易于掌握,同学们应该对这两个准则有所了解。
系统的稳定性是指3
信号与系统 怎么判断一个信号系统是否是稳定的
此信号的输出为f[2k]时,输出为y[k].那么当输入有一个时移k0的时候,输入为f[2k-k0],输出为y=f[2k-k0]=f[2(k-k0/2)]=y[k-k0/2]线性系统的定义为当输入时移为k0输出的时移要为k0,可是这个系统的输出的时移却为k0/2,所以此系统并不是是不变系统。
稳定性又分为绝对稳定性和相对稳定性;
如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。
1、如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。
2、如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变化等原因,实际上等幅振荡不能维持,系统总会由于某些因素导致不稳定。因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。
3、如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不稳定的。
2024-07-31 广告