离散傅里叶变换离散傅里叶变换公式
傅里叶变换
离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,通过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。但是它的致命缺点是离散傅里叶变换: 计算量太大,时间复杂度太高,当采样点数太高的时候,计算缓慢, 由此出现了DFT的快速实现,即下面的快速傅里叶变换FFT。
这里原始信号的三个正弦波的频率分别为,200Hz、400Hz、600Hz,最大频率为600赫兹。根据采样定理,fs至少是600赫兹的2倍,这里选择1400赫兹,即在一秒内选择1400个点。
1400
[-4.18864943e-12+0.j9.66210986e-05-0.04305756j3.86508070e-04-0.08611996j
8.69732036e-04-0.12919206j 1.54641157e-03-0.17227871j]
换之后的结果数据长度和原始采样信号是一样的
每一个变换之后的值是一个复数,为a+bj的形式下标为0和 N /2的两个复数的虚数部分为0,下标为i和 N - i 的两个复数共辄,也就是其虚部数值相同、符号相反。再用ifft()从频域转回时域之后,出现了由误差引起的很小的虚部,用np.real()取其实部即可.
_由于一半是另一半的共轭,因此只需要关心一半数据.fft转换后下标为0的实数表示时域信号中的直流成分(不随时间变化)
振幅谱的纵坐标很大,而且具有对称性
Y=A1+A2 cos(2πω2+φ2)+A3 cos(2πω3+φ3)+A4*cos(2πω4+φ4)
经过FFT之后,得到的“振幅图”中,
第一个峰值(频率位置)的模是A1的N倍,N为采样点,本例中为N=1400,此例中没有,因为信号没有常数项A1
第二个峰值(频率位置)的模是A2的N/2倍,N为采样点,
第三个峰值(频率位置)的模是A3的N/2倍,N为采样点,
第四个峰值(频率位置)的模是A4的N/2倍,N为采样点,
STFT短时傅里叶变换,实际上是对一系列加窗数据做FFT。有的地方也会提到DCT(离散傅里叶变换),而DCT跟FFT的关系就是离散傅里叶变换:FFT是实现DCT的一种快速算法。
FFT有个参数N,表示对多少个点做FFT,如果一帧里面的点的个数小于N就会zero-padding到N的长度。每个点对应一个频率点,某一点n(n从1开始)表示的频率为:
第一个点(n=1,Fn等于0)表示直流信号,最后一个点N的下一个点(实际上这个点是不存在的)表示采样频率Fs。
FFT后离散傅里叶变换我们可以得到N个频点,比如,采样频率为16000,N为1600,那么FFT后就会得到1600个点,FFT得到的1600个值的模可以表示1600个频点对应的振幅。因为FFT具有对称性,当N为偶数时取N/2+1个点,当N为奇数时,取(N+1)/2个点,比如N为512时最后会得到257个值。
scipy.signal.stft(x,fs = 1.0,window =‘hann’,nperseg = 256,noverlap = None,nfft = None,detrend = False,return_oneside = True,boundary =‘zeros’,padded = True,axis = -1 )
dft指的是什么?
DFT(离散傅里叶变换)一般指离散傅里叶变换。
离散傅里叶变换(Discrete Fourier Transform,DFT)傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,通过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。
物理意义
设x(n)是长度为N的有限长序列,则其傅里叶变换,Z变换与离散傅里叶变换分别用以下三个关系式表示:
X(e^jω)= ∑n={0,N-1}x(n) e^j-ωn。
X(z)= ∑n={0,N-1}x(n)z^-n。
X(k)= ∑n={0,N-1}x(n) e^-j2πkn/N。
单位圆上的Z变换就是序列的傅里叶变换。
离散傅里叶变换是x(n)的频谱X(ejω)在[0,2π]上的N点等间隔采样,也就是对序列频谱的离散化,这就是DFT的物理意义。
离散傅里叶变换怎么求?
根据欧拉公式,cosω0t=[exp(jω0t)+exp(-jω0t)]/2。
直流信号的傅里叶变换是2πδ(ω)。
根据频移性质可得exp(jω0t)的傅里叶变换是2πδ(ω-ω0)。
再根据线性性质,可得
cosω0t=[exp(jω0t)+exp(-jω0t)]/2的傅里叶变换是πδ(ω-ω0)+πδ(ω+ω0)。
扩展资料
计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。
它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。
时间抽取算法 令信号序列的长度为N=2,其中M是正整数,可以将时域信号序列x(n)分解成两部分,一是偶数部分x(2n),另一是奇数部分x(2n+1),于是信号序列x(n)的离散傅里叶变换可以用两个N/2抽样点的离散傅里叶变换来表示和计算。考虑到和离散傅里叶变换的周期性,式⑴可以写成
⑶其中(4a)(4b)由此可见,式⑷是两个只含有N/2个点的离散傅里叶变换,G(k)仅包括原信号序列中的偶数点序列,H(k)则仅包括它的奇数点序列。虽然k=0,1,2,,N-1,但是G(k)和H(k)的周期都是N/2,它们的数值以N/2周期重复。
离散傅里叶变换常用公式表
离散傅里叶变换常用公式表是:cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。
傅里叶变换离散傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。
Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。
傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
傅里叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布。
论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827)。
当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在离散傅里叶变换他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。
法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,离散傅里叶变换他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。