请教高中数学问题,求高手解答,要有详细步骤哦~
1个回答
展开全部
∵tanα/(tanα-2)=1/4,∴4tanα=tanα-2,∴3tanα=-2,∴tanα=-2/3。
于是:
(1)
(2sinα+cosα)/(sinα-cosα)
=(2tanα+1)/(tanα+1)
=[2×(-2/3)+1]/(-2/3+1)
=(-4+3)/(-2+3)
=-1。
(2)
[cos(α/2)]^2cosα-cos(π/2-α)cos(π+α)-(1/2)cosα
=(1/2)(1+cosα)cosα-sinα(-cosα)-(1/2)cosα
=(1/2)(cosα)^2+sinαcosα
=[(1/2)(cosα)^2+sinαcosα]/[(sinα)^2+(cosα)^2]
=(1/2+tanα)/[(tanα)^2+1]
=(1/2-2/3)/[(-2/3)^2+1]
=(1/6)/(13/9)
=3/26。
于是:
(1)
(2sinα+cosα)/(sinα-cosα)
=(2tanα+1)/(tanα+1)
=[2×(-2/3)+1]/(-2/3+1)
=(-4+3)/(-2+3)
=-1。
(2)
[cos(α/2)]^2cosα-cos(π/2-α)cos(π+α)-(1/2)cosα
=(1/2)(1+cosα)cosα-sinα(-cosα)-(1/2)cosα
=(1/2)(cosα)^2+sinαcosα
=[(1/2)(cosα)^2+sinαcosα]/[(sinα)^2+(cosα)^2]
=(1/2+tanα)/[(tanα)^2+1]
=(1/2-2/3)/[(-2/3)^2+1]
=(1/6)/(13/9)
=3/26。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询