已知数列{an}是公比大于1的等比数列,满足a3?a4=128,a2+a5=36;数列{bn}满足bn+1=2bn-bn-1(n∈N*,n≥2
已知数列{an}是公比大于1的等比数列,满足a3?a4=128,a2+a5=36;数列{bn}满足bn+1=2bn-bn-1(n∈N*,n≥2),且b2≠b1=1,b2,...
已知数列{an}是公比大于1的等比数列,满足a3?a4=128,a2+a5=36;数列{bn}满足bn+1=2bn-bn-1(n∈N*,n≥2),且b2≠b1=1,b2,b4,b8成等比数列.(1)求{an}及{bn}的通项公式;(2)求数列{anbn}的前n项和Sn.
展开
展开全部
(1)依题意,
?
,又a5>a2,
∴
,解得
,
∴an=2n.
由bn+1=2bn-bn-1,得2bn=bn+1+bn-1(n∈N*,n≥2),
∴{bn}是等差数列,设其公差为d,由b42=b2?b8及b1=1,得:(1+3d)2=(1+d)(1+7d),
∴d2=d,又b2≠b1,
∴d=1,
∴bn=1+(n-1)×1=n.
∴an=2n,bn=n;
(2)由Sn=1×21+2×22+…+(n-1)×2n-1+n×2n得:
2Sn=1×22+…+(n-1)×2n+n×2n+1;
两式相减得:-Sn=(21+22+…+2n)-n×2n+1=
-n×2n+1=-2+(1-n)×2n+1,
故Sn=(n-1)×2n+1+2.
|
|
∴
|
|
∴an=2n.
由bn+1=2bn-bn-1,得2bn=bn+1+bn-1(n∈N*,n≥2),
∴{bn}是等差数列,设其公差为d,由b42=b2?b8及b1=1,得:(1+3d)2=(1+d)(1+7d),
∴d2=d,又b2≠b1,
∴d=1,
∴bn=1+(n-1)×1=n.
∴an=2n,bn=n;
(2)由Sn=1×21+2×22+…+(n-1)×2n-1+n×2n得:
2Sn=1×22+…+(n-1)×2n+n×2n+1;
两式相减得:-Sn=(21+22+…+2n)-n×2n+1=
2(1?2n) |
1?2 |
故Sn=(n-1)×2n+1+2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询