(2013?绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线

(2013?绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①B... (2013?绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是(  )A.1B.2C.3D.4 展开
 我来答
然然﹋oogt
推荐于2017-10-01 · TA获得超过206个赞
知道答主
回答量:115
采纳率:0%
帮助的人:138万
展开全部
①∵∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
∵在△BAD和△CAE中,
AB=AC
∠BAD=∠CAE
AD=AE

∴△BAD≌△CAE(SAS),
∴BD=CE,故①正确;
②∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,
则BD⊥CE,故②正确;
③∵△ABC为等腰直角三角形,
∴∠ABC=∠ACB=45°,
∴∠ABD+∠DBC=45°,
∵∠ABD=∠ACE
∴∠ACE+∠DBC=45°,故③正确;
④∵BD⊥CE,
∴在Rt△BDE中,利用勾股定理得:
BE2=BD2+DE2
∵△ADE为等腰直角三角形,
∴DE=
2
AD,
即DE2=2AD2
∴BE2=BD2+DE2=BD2+2AD2
而BD2≠2AB2,故④错误,
综上,正确的个数为3个.
故选:C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式