什么是函数的奇偶性?

 我来答
光环国际
2017-03-09 · IT·互联网经理人培训口碑品牌
光环国际
光环国际成立于2001年7月,是一家专注于IT互联网经理人培训机构,经过18年发展,光环卓而不凡的服务品质,现已成为IT互联网经理人培训国内口碑品牌。
向TA提问
展开全部

函数奇偶性:

奇函数在其对称区间[a,b]和[-b,-a]上具有银指相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数);偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是减函数(增函数)。

定义:

函数奇偶性一般地,对于函数f(x)

(1)如果对于函数定义域内的锋梁配任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

说明:

①奇、偶性是函数的整体性质,对整个定义域而言

②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

(分析:判断渣信函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

③判断或证明函数是否具有奇偶性的根据是函数的定义。

图象的特征

奇偶函数图象的特征:

定理奇函数的图象关于原点成中心对称图形,偶函数的图象关于y轴成轴对称图形。

设f(x)为奇函数等价于f(x)的图像关于原点对称

则点(x,y)→(-x,-y)

因为偶函数在某一区间上单调递增,则在它的对称区间上是单调递减。

奇函数 在某一区间上单调递增,则在它的对称区间上也是单调递增。

附:需要注意的是奇偶函数的定义域肯定是对称的,例如区间为(-2,2)。但函数就是不一定对称的。

爱汪峰爱音乐
2015-07-27 · TA获得超过122个赞
知道答主
回答量:156
采纳率:0%
帮助的人:47.7万
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
year贺袖
2015-07-27 · 超过17用户采纳过TA的回答
知道答主
回答量:90
采纳率:0%
帮助的人:27.4万
展开全部
多么简单的问题啊=_=
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式