求下列函数的单调区间及极值点。f(x)=(2x-5)3√x^2
1个回答
2016-11-19
展开全部
f(x) = (2x-5)*x^(2/3) = 2x^(5/3) -5x^(2/3)
f ′(x) = (10/3)x^(2/3)-(10/3)x^(-1/3)
= (10/3)x^(-1/3) * (x-1)
单调减区间:(-∞,1)
单调增区间:(1,+∞)
当x=1时,极小值f(1)=(2-5)*1^(2/3) = -3
f ′(x) = (10/3)x^(2/3)-(10/3)x^(-1/3)
= (10/3)x^(-1/3) * (x-1)
单调减区间:(-∞,1)
单调增区间:(1,+∞)
当x=1时,极小值f(1)=(2-5)*1^(2/3) = -3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询