对坐标的曲面积分对称性怎么看
3个回答
展开全部
一般只涉及积分区域对称性和积分函数的对称性。
重积分曲线曲面都有第一型和第二型积分之分。
第二型曲线或曲面积分是被积区域带方向的。被积区域尽管对称,但对称的两区域积分方向不同,函数积分值就相互抵消了。
此题就属于第二型曲面积分。在曲面z=x^2+y^2上(取外侧也好,内侧也好),zOx平面把曲面一分两半,一半方向指向y轴正方向,一半指向y轴负方向。
扩展资料:
当被积函数大于零时,二重积分是柱体的体积。
当被积函数小于零时,二重积分是柱体体积负值。
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
参考资料来源:百度百科-二重积分
展开全部
对称的是那个截面,然后用公式可以把dzdx的那方向进行计算,从y轴正方向上看,所截得面就只是一个线段,面积是0
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |