向量组所含向量个数怎么看
向量组的个数指的是这组向量的最大线性无关组的个数。
比如a1=(1,0,0),a1=(0,1,0),a3=(0,0,1),则a1,a2,a3的维数是3。
向量的维数指的是这个向量含几个分量,比如b=(x1,x2,x3,x4)的维数就是4。
在空间直角坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j,k作为一组基底。若为该坐标系内的任意向量,以坐标原点O为起点作向量a。由空间基本定理知,有且只有一组实数(x,y,z),使得a=ix+jy+kz,因此把实数对(x,y,z)叫做向量a的坐标。
坐标表示:
1) 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量 向量机器模型i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点作向量OP=a。
由平面向量基本定理知,有且只有一对实数(x,y),使得a=向量OP=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点P的坐标。向量OP称为点P的位置向量。
2) 在立体三维坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j,k作为一组基底。若a为该坐标系内的任意向量,以坐标原点O为起点作向量OP=a。
由空间基本定理知,有且只有一组实数(x,y, z) 向量的坐标表示,使得a=向量OP=xi+yj+zk,因此把实数对(x,y, z)叫做向量a的坐标,记作a=(x,y, z)。这就是向量a的坐标表示。其中(x,y, z),也就是点P的坐标。向量OP称为点P的位置向量。