设sn为数列(an)的前n项和,已知a1≠0,2an一a1=s1xsn,n∈N,求a1,a2,和(
设sn为数列(an)的前n项和,已知a1≠0,2an一a1=s1xsn,n∈N,求a1,a2,和(an)的通项公式,和(na)的前n项和,...
设sn为数列(an)的前n项和,已知a1≠0,2an一a1=s1xsn,n∈N,求a1,a2,和(an)的通项公式,和(na)的前n项和,
展开
1个回答
展开全部
2an-a1 = S1.Sn
n=1
a1= (a1)^2
a1 =1
n=2
2a2- a1 = a1.(a1+a2)
2a2-1 = 1+a2
a2= 2
2an-a1 = S1.Sn
2[Sn-S(n-1)] -1 = Sn
Sn +1 = 2[S(n-1) + 1]
{Sn +1 } 是等比数列, q=2
Sn +1 = 2^(n-1).( S1 +1 )
= 2^n
Sn = -1+2^n
an = Sn -S(n-1)
= 2^(n-1)
bn = nan
= n.2^(n-1)
let
S = 1.2^0+ 2.2^1+....+n.2^(n-1) (1)
2S = 1.2^1+ 2.2^2+....+n.2^n (2)
(2)-(1)
S = n.2^n - [1+2+2^2+...+2^(n-1)]
= n.2^n - (2^n -1)
= 1+ (n-1).2^n
Tn = b1+b2+...+bn
= S
= 1+ (n-1).2^n
n=1
a1= (a1)^2
a1 =1
n=2
2a2- a1 = a1.(a1+a2)
2a2-1 = 1+a2
a2= 2
2an-a1 = S1.Sn
2[Sn-S(n-1)] -1 = Sn
Sn +1 = 2[S(n-1) + 1]
{Sn +1 } 是等比数列, q=2
Sn +1 = 2^(n-1).( S1 +1 )
= 2^n
Sn = -1+2^n
an = Sn -S(n-1)
= 2^(n-1)
bn = nan
= n.2^(n-1)
let
S = 1.2^0+ 2.2^1+....+n.2^(n-1) (1)
2S = 1.2^1+ 2.2^2+....+n.2^n (2)
(2)-(1)
S = n.2^n - [1+2+2^2+...+2^(n-1)]
= n.2^n - (2^n -1)
= 1+ (n-1).2^n
Tn = b1+b2+...+bn
= S
= 1+ (n-1).2^n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询