一些高等数学请教
展开全部
(1)
(a)
『Proof』:
故{an}是一个Cauchy列
(b)
∵ {an}为Cauchy列
t=1/(t^4+16 )
i.e. t^5+16t-1=0
结论成立
(c)
由(a)(b)易得 {bn}也为Cauchy列,并且极限都是方程 x^5+16x-1=0的根,结论成立
(2)
(3)
(4)
对任意实数c
lim(x→∞)[(x+c)/(x-c)]^x
=lim(x→∞)[(x-c+2c)/(x-c)]^x
=lim(x→∞)[1+(2c)/(x-c)]^x
=lim(x→∞)[1+(2c)/(x-c)]^(x-c)
=lim(x→∞)[1+(2c)/(x-c)]^{[(x-c)/2c](2c)}
=lim(x→∞){[1+(2c)/(x-c)]^[(x-c)/2c]}^(2c)
=e^(2c)
即
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询