(1+1/1×3)(1+1/2×4)(1+1/3×5)(1+1/4×6)……(1+1/2013×2
(1+1/1×3)(1+1/2×4)(1+1/3×5)(1+1/4×6)……(1+1/2013×2015)咋写过程...
(1+1/1×3)(1+1/2×4)(1+1/3×5)(1+1/4×6)……(1+1/2013×2015) 咋写 过程
展开
展开全部
(1+1/1×3)(1+1/2×4)(1+1/3×5)(1+1/4×6)……(1+1/2013×2015)
根据上小题所得规律,先通分,上式可转换为:
[(1x3+1)/(1x3)][(2x4+1)/(2x4)][(3x5+1)/(3x5)][(4x6+1)/(4x6)]……[(2013x2015+1)/(2013x2015)]
=[(2)2/(1x3)][(3)2/(2x4)][(4)2/(3x5)][(5)2/(4x6)]……[(2014)2/(2013x2015)]
建议写在纸上,即可看到效果(分子分母前后项可以连续约分):化简可得:
=2x(2014/2015)
=4028/2015
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询