在△ABC中,a,b,c分别为内角A、B、C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC.(Ⅰ)求角A的大小;

在△ABC中,a,b,c分别为内角A、B、C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC.(Ⅰ)求角A的大小;(Ⅱ)若sinB+sinC=3,试判断... 在△ABC中,a,b,c分别为内角A、B、C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC.(Ⅰ)求角A的大小;(Ⅱ)若sinB+sinC=3,试判断△ABC的形状. 展开
 我来答
抄冰丹2
2014-12-17 · TA获得超过289个赞
知道答主
回答量:131
采纳率:0%
帮助的人:179万
展开全部
(Ⅰ)由2asinA=(2b-c)sinB+(2c-b)sinC,
利用正弦定理化简得:2a2=(2b-c)b+(2c-b)c,…(2分)
整理得:bc=b2+c2-a2
∴cosA=
b2+c2-a2
2bc
=
1
2
,…(4分)
又A为三角形的内角,
则A=60°;…(5分)
(Ⅱ)∵A+B+C=180°,A=60°,
∴B+C=180°-60°=120°,即C=120°-B,…(6分)
代入sinB+sinC=
3
得:sinB+sin(120°-B)=
3
,…(7分)
∴sinB+sin120°cosB-cos120°sinB=
3
,…(8分)
3
2
sinB+
3
2
cosB=
3
,即sin(B+30°)=1,…(10分)
∴0<B<120°,
∴30°<B+30°<150°,
∴B+30°=90°,即B=60°,…(11分)
∴A=B=C=60°,
则△ABC为等边三角形.…(12分).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式