请问第二小题的最大值最小值怎么得出来的?
2个回答
展开全部
(2)n[1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)]
≥ n[1/(n^2+nπ)+1/(n^2+nπ)+...+1/(n^2+nπ)]
= n^2/(n^2+nπ) = n/(n+π) ;
又 n[1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)]
≤ n[1/(n^2+π)+1/(n^2+π)+...+1/(n^2+π)] = n^2/(n^2+π)
即得 n/(n+π) ≤ n[1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)] ≤ n^2/(n^2+π)
≥ n[1/(n^2+nπ)+1/(n^2+nπ)+...+1/(n^2+nπ)]
= n^2/(n^2+nπ) = n/(n+π) ;
又 n[1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)]
≤ n[1/(n^2+π)+1/(n^2+π)+...+1/(n^2+π)] = n^2/(n^2+π)
即得 n/(n+π) ≤ n[1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)] ≤ n^2/(n^2+π)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询