初一数学上学期期末试卷

 我来答
一袭可爱风1718
2022-06-24 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6443
采纳率:99%
帮助的人:36.2万
展开全部

  初一的数学是所有学科中比较难的一门学科,在即将到来的期末考试,同学们又要如何准备期末试卷来复习呢?下面是我为大家带来的关于初一数学上学期期末试卷,希望会给大家带来帮助。

  初一数学上学期期末试卷:

  一.选择题(共8小题,每题3分)

  1.(2014•钦州)如果收入80元记作+80元,那么支出20元记作(  )

  A. +20元 B. ﹣20元 C. +100元 D. ﹣100元

  考点: 正数和负数.

  分析: 在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.

  解答: 解:“正”和“负”相对,

  所以如果+80元表示收入80元,

  那么支出20元表示为﹣20元.

  故选:B.

  点评: 此题考查的是正数和负数的定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.

  2.(2015•深圳模拟)北京时间2010年4月14日07时49分,青海省玉树县发生地震,它牵动了全国亿万人民的心,深圳市慈善总会在一星期内接受了54840000元的捐款,将54840000用科学记数法(精确到百万)表示为(  )

  A. 54×106 B. 55×106 C. 5.484×107 D. 5.5×107

  考点: 科学记数法与有效数字.

  分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于54840000有8位,所以可以确定n=8﹣1=7.

  因为54840000的十万位上的数字是8,所以用“五入”法.

  用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.

  解答: 解:54840000=5.484×107≈5.5×107.

  故选D.

  点评: 本题考查科学记数法的表示方法以及掌握利用“四舍五入法”,求近似数的方法.

  3.(2014•台湾)数轴上A、B、C三点所代表的数分别是a、1、c,且|c﹣1|﹣|a﹣1|=|a﹣c|.若下列选项中,有一个表示A、B、C三点在数轴上的位置关系,则此选项为何?(  )

  A. B. C. D.

  考点: 数轴;绝对值.

  分析: 从选项数轴上找出a、B、c的关系,代入|c﹣1|﹣|a﹣1|=|a﹣c|.看是否成立.

  解答: 解:∵数轴上A、B、C三点所代表的数分别是a、1、c,设B表示的数为b,

  ∴b=1,

  ∵|c﹣1|﹣|a﹣1|=|a﹣c|.

  ∴|c﹣b|﹣|a﹣b|=|a﹣c|.

  A、b

  B、c

  C、a

  D、b

  故选:A.

  点评: 本题主要考查了数轴及绝对值.解题的关键是从数轴上找出a、B、c的关系,代入|c﹣1|﹣|a﹣1|=|a﹣c|是否成立.

  4.(2014•日照)某养殖场2013年底的生猪出栏价格是每千克a元,受市场影响,2014年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克(  )

  A. (1﹣15%)(1+20%)a元 B. (1﹣15%)20%a元

  C. (1+15%)(1﹣20%)a元 D. (1+20%)15%a元

  考点: 列代数式.

  专题: 销售问题.

  分析: 由题意可知:2014年第一季度出栏价格为2013年底的生猪出栏价格的(1﹣15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.

  解答: 解:第三季度初这家养殖场的生猪出栏价格是每千克(1﹣15%)(1+20%)a元.

  故选:A.

  点评: 此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.

  5.(2014•烟台)按如图的运算程序,能使输出结果为3的x,y的值是(  )

  A. x=5,y=﹣2 B. x=3,y=﹣3 C. x=﹣4,y=2 D. x=﹣3,y=﹣9

  考点: 代数式求值;二元一次方程的解.

  专题: 计算题.

  分析: 根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.

  解答: 解:由题意得,2x﹣y=3,

  A、x=5时,y=7,故A选项错误;

  B、x=3时,y=3,故B选项错误;

  C、x=﹣4时,y=﹣11,故C选项错误;

  D、x=﹣3时,y=﹣9,故D选项正确.

  故选:D.

  点评: 本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.

  6.(2014•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为(  )

  A. ﹣6 B. 6 C. ﹣2或6 D. ﹣2或30

  考点: 代数式求值.

  专题: 整体思想.

  分析: 方程两边同时乘以2,再化出2x2﹣4x求值.

  解答: 解:x2﹣2x﹣3=0

  2×(x2﹣2x﹣3)=0

  2×(x2﹣2x)﹣6=0

  2x2﹣4x=6

  故选:B.

  点评: 本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.

  7.(2014•常州)下列立体图形中,侧面展开图是扇形的是(  )

  A. B. C. D.

  考点: 几何体的展开图.

  分析: 圆锥的侧面展开图是扇形.

  解答: 解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.

  故选:B.

  点评: 解题时勿忘记圆锥的特征及圆锥展开图的情形.

  8.(2011•黄冈模拟)下列图形中,是正方体表面展开图的是(  )

  A. B. C. D.

  考点: 几何体的展开图.

  分析: 利用正方体及其表面展开图的特点解题.

  解答: 解:A、B折叠后,缺少一个底面,故不是正方体的表面展开图;选项D折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体,故选C.

  点评: 只要有“田”字格的展开图都不是正方体的表面展开图.

  二.填空题(共6小题,每题3分)

  9.(2014•湘西州)如图,直线AB和CD相交于点O,OE平分∠DOB,∠AOC=40°,则∠DOE= 20° 度.

  考点: 对顶角、邻补角;角平分线的定义.

  分析: 由∠AOC=40°,根据对顶角相等求出∠DOB=40°,再根据角平分线定义求出∠DOE即可.

  解答: 解:∵∠AOC=40°,

  ∴∠DOB=∠AOC=40°,

  ∵OE平分∠DOB,

  ∴∠DOE= ∠BOD=20°,

  故答案为:20°.

  点评: 本题考查了对顶角的性质角、角平分线定义的应用,关键是求出∠BOD的度数.

  10.(2014•连云港)如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= 31° .

  考点: 平行线的性质.

  分析: 根据两直线平行,同位角相等可得∠EFD=∠1,再根据角平分线的定义可得∠2= ∠EFD.

  解答: 解:∵AB∥CD,

  ∴∠EFD=∠1=62°,

  ∵FG平分∠EFD,

  ∴∠2= ∠EFD= ×62°=31°.

  故答案为:31°.

  点评: 本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.

  11.(2014•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 80 度.

  考点: 平行线的性质.

  专题: 计算题.

  分析: 根据平行线的性质求出∠C,根据三角形外角性质求出即可.

  解答: 解:∵AB∥CD,∠1=45°,

  ∴∠C=∠1=45°,

  ∵∠2=35°,

  ∴∠3=∠∠2+∠C=35°+45°=80°,

  故答案为:80.

  点评: 本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出∠C的度数和得出∠3=∠2+∠C.

  12.(2014•齐齐哈尔)已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为 9 .

  考点: 代数式求值.

  专题: 整体思想.

  分析: 把所求代数式整理成已知条件的形式,然后代入进行计算即可得解.

  解答: 解:∵x2﹣2x=5,

  ∴2x2﹣4x﹣1

  =2(x2﹣2x)﹣1,

  =2×5﹣1,

  =10﹣1,

  =9.

  故答案为:9.

  点评: 本题考查了代数式求值,整体思想的利用是解题的关键.

  13.(2014•盐城)“x的2倍与5的和”用代数式表示为 2x+5 .

  考点: 列代数式.

  分析: 首先表示x的2倍为2x,再表示“与5的和”为2x+5.

  解答: 解:由题意得:2x+5,

  故答案为:2x+5.

  点评: 此题主要考查了列代数式,关键是列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.

  14.(2014•怀化)计算:(﹣1)2014= 1 .

  考点: 有理数的乘方.

  分析: 根据(﹣1)的偶数次幂等于1解答.

  解答: 解:(﹣1)2014=1.

  故答案为:1.

  点评: 本题考查了有理数的乘方,﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.

  三.解答题(共11小题)

  15.(2005•宿迁)计算:(﹣2)2﹣|﹣7|+3﹣2×(﹣ ).

  考点: 有理数的混合运算.

  分析: 含有有理数的加、减、乘、除、乘方多种运算的算式.根据几种运算的法则可知:减法、除法可以转化成加法和乘法,乘方是利用乘法法则来定义的,所以有理数混合运算的关键是加法和乘法.加法和乘法的法则都包括符号和绝对值两部分,同学在计算中要学会正确确定结果的符号,再进行绝对值的运算.

  解答: 解:原式=4﹣7+3+1=1.

  点评: 注意:(1)要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.

  (2)在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.

  16.(2014秋•吉林校级期末)计算:(﹣ ﹣ + )÷(﹣ )

  考点: 有理数的除法.

  分析: 将除法变为乘法,再根据乘法分配律计算即可求解.

  解答: 解:原式=(﹣ ﹣ + )×(﹣36)

  =﹣ ×(﹣36)﹣ ×(﹣36)+ ×(﹣36)

  =27+20﹣21

  =26.

  点评: 此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.

  17.(2014•石景山区二模)已知当x=1时,2ax2+bx的值为﹣2,求当x=2时,ax2+bx的值.

  考点: 代数式求值.

  专题: 整体思想.

  分析: 把x=1代入代数式求出a、b的关系式,再把x=2代入代数式整理即可得解.

  解答: 解:将x=1代入2ax2+bx=﹣2中,

  得2a+b=﹣2,

  当x=2时,ax2+bx=4a+2b,

  =2(2a+b),

  =2×(﹣2),

  =﹣4.

  点评: 本题考查了代数式求值,整体思想的利用是解题的关键.

  18.(2014秋•吉林校级期末)出租车司机小张某天上午的营运全是东西走向的路线,假定向东为正,向西为负,他这天上午行车里程如下:(单位:km)+12,﹣4,+15,﹣13,+10,+6,﹣22.求:

  (1)小张在送第几位乘客时行车里程最远?

  (2)若汽车耗油0.1L/km,这天上午汽车共耗油多少升?

  考点: 正数和负数.

  分析: (1)根据绝对值的性质,可得行车距离,根据绝对值的大小,可得答案;

  (2)根据行车的总路程乘以单位耗油量,可得答案.

  解答: 解:(1)∵|﹣22|>|15|>|﹣13|>|12|>|10|>|6|>|﹣4|,

  ∴小张在送第七位乘客时行车里程最远;

  (2)由题意,得

  (12+|﹣4|+15+|﹣13|+10+6+|﹣22|)×0.1=82×0.1=8.2(升),

  答:这天上午汽车共耗油8.2升.

  点评: 本题考查了正数和负数,利用了绝对值的意义,有理数的乘法.

  19.(2005•广东)如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=40°,求∠2的度数.

  考点: 平行线的性质;对顶角、邻补角.

  专题: 计算题.

  分析: 根据平行线的性质“两直线平行,内错角相等”,再利用角平分线的性质推出∠2=180°﹣2∠1,这样就可求出∠2的度数.

  解答: 解:∵AB∥CD,

  ∴∠1=∠AEG.

  ∵EG平分∠AEF,

  ∴∠1=∠GEF,∠AEF=2∠1.

  又∵∠AEF+∠2=180°,

  ∴∠2=180°﹣2∠1=180°﹣80°=100°.

  点评: 两条平行线被第三条直线所截,解答此类题关键是在复杂图形之中辨认出应用性质的基本图形,从而利用性质和已知条件计算.

  20.(2014秋•吉林校级期末)已知直线AB和CD相交于点O,∠AOC为锐角,过O点作直线OE、OF.若∠COE=90°,OF平分∠AOE,求∠AOF+∠COF的度数.

  考点: 对顶角、邻补角;角平分线的定义.

  分析: 根据角平分线的定义可得∠AOF=∠EOF,然后解答即可.

  解答: 解:∵OF平分∠AOE,

  ∴∠AOF=∠EOF,

  ∴∠AOF+∠COF=∠EOF+∠COF=∠COE=90°.

  点评: 本题考查了角平分线的定义,是基础题,熟记概念并准确识图是解题的关键.

  21.(2014秋•吉林校级期末)如图,已知OF⊥OC,∠BOC:∠COD:∠DOF=1:2:3,求∠AOC的度数.

  考点: 垂线;角的计算.

  分析: 根据垂线的定义,可得∠COF的度数,根据按比例分配,可得∠COD的度数,根据比例的性质,可得∠BOC的度数,根据邻补角的性质,可得答案.

  解答: 解:由垂直的定义,得

  ∠COF=90°,

  按比例分配,得

  ∠COD=90°× =36°.

  ∠BOC:∠COD=1:2,

  即∠BOC:36°=1:2,由比例的性质,得

  ∠BOC=18°,

  由邻补角的性质,得

  ∠AOC=180°﹣∠BOC=180°﹣18°=162°.

  点评: 本题考查了垂线,利用了垂线的定义,按比例分配,邻补角的性质.

  22.(2014秋•吉林校级期末)∠BOC=60°,OE平分∠AOC,OF平分∠BOC,若AO⊥BO,则∠EOF是多少度?

  考点: 垂线;角平分线的定义.

  分析: 根据垂线的定义,可得∠AOB的度数,根据角的和差,可得∠AOC的度数,根据角平分线的性质,可得∠COE、∠COF的度数,根据角的和差,可得答案.

  解答: 解:由AO⊥BO,得∠AOB=90°,

  由角的和差,得∠AOC=∠AOB+∠BOC=150°.

  由OE平分∠AOC,OF平分∠BOC,得∠COE= ∠AOC= ×150°=75°,∠COF= ∠BOC= ×60°=30°.

  由角的和差,得∠EOF=∠COE﹣∠COF=75°﹣30°=45°.

  点评: 本题考查了垂线,利用了垂线的定义,角平分线的定义,角的和差.

  23.(2012•锦州二模) 如图,直线AB∥CD,∠A=100°,∠C=75°,则∠E等于 25 °.

  考点: 平行线的性质.

  专题: 探究型.

  分析: 先根据平行线的性质求出∠EFD的度数,再由三角形外角的性质得出结论即可.

  解答: 解:∵直线AB∥CD,∠A=100°,

  ∴∠EFD=∠A=100°,

  ∵∠EFD是△CEF的外角,

  ∴∠E=∠EFD﹣∠C=100°﹣75°=25°.

  故答案为:25.

  点评: 本题考查的是平行线的性质,即两直线平行,同位角相等.

  24.(2005•安徽)如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.

  考点: 平行线的性质;角平分线的定义;对顶角、邻补角.

  专题: 计算题.

  分析: 根据角平分线的定义,两直线平行内错角相等的性质解答即可.

  解答: 解:∵∠EMB=50°,

  ∴∠BMF=180°﹣∠EMB=130°.

  ∵MG平分∠BMF,

  ∴∠BMG= ∠BMF=65°,

  ∵AB∥CD,

  ∴∠1=∠BMG=65°.

  点评: 主要考查了角平分线的定义及平行线的性质,比较简单.

  25.(2014秋•吉林校级期末)将一副直角三角尺(即直角三角形AOB和直角三角形COD)的直角顶点O的重合,其中,在△AOB中,∠A=60°,∠B=30°,∠AOB=90°;在△COD中,∠C=∠D=45°,∠COD=90°.

  (1)如图1,当OA在∠COD的外部,且∠AOC=45°时,①试说明CO平分∠AOB; ②试说明OA∥CD(要求书写过程);

  (2)如图2,绕点O旋转直角三角尺AOB,使OA在∠COD的内部,且CD∥OB,试探索∠AOC=45°是否成立,并说明理由.

  考点: 平行线的判定与性质;角的计算.

  分析: (1)①当∠AOC=45°时,根据条件可求得∠COB=45°可说明CO平分∠AOB;②设CD、OB交于点E,则可知OE=CE,可证得OB⊥CD,结合条件可证明OA∥CD;

  (2)由平行可得到∠D=∠BOD=45°,则可得到∠AOD=45°,可得到结论.

  解答: 解:(1)①∵∠AOB=90°,∠AOC=45°,

  ∴∠COB=90°﹣45°=45°,

  ∴∠AOC=∠COB,

  即OC平分∠AOB;

  ②如图,设CD、OB交于点E,

  ∵∠C=45°,

  ∴∠C=∠COB,

  ∴∠CEO=90°,

  ∵∠AOB=90°,

  ∴∠AOB+∠OEC=180°,

  ∴AO∥CD;

  (2)∠AOC=45°,理由如下:

  ∵CD∥OB,

  ∴∠DOB=∠D=45°,

  ∴∠AOD=90°﹣∠DOB=45°,

  ∴∠AOC=90°﹣∠AOD=45°.

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式