已知sin(a-3π)=2cos(a-4π),求(sin(π-a)+5cos((3π/2)-a))/(2sin(3π/2+a)-sin(-a))
1个回答
展开全部
sin和cos周期都是2π
所以sin(a-3π)=sin(a+π)=-sina
2cos(a-4π)=2cosa
所以sina=-2cosa
[sin(π-a)+5cos((3π/2)-a)]/[2sin(3π/2+a)-sin(-a)]
=[sina+5cos(π+(π/2)-a)]/[2sin(π+π/2+a)+sina]
=[sina-5cos((π/2)-a)]/[-2sin(π/2+a)+sina]
=(sina-5sina)/(-2cosa+sina)
=-4sina/(-2cosa+sina)
=-4*(-2)cosa/(-2cosa-2cosa)
=8/(-4)
=-2
所以sin(a-3π)=sin(a+π)=-sina
2cos(a-4π)=2cosa
所以sina=-2cosa
[sin(π-a)+5cos((3π/2)-a)]/[2sin(3π/2+a)-sin(-a)]
=[sina+5cos(π+(π/2)-a)]/[2sin(π+π/2+a)+sina]
=[sina-5cos((π/2)-a)]/[-2sin(π/2+a)+sina]
=(sina-5sina)/(-2cosa+sina)
=-4sina/(-2cosa+sina)
=-4*(-2)cosa/(-2cosa-2cosa)
=8/(-4)
=-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询