展开全部
∫(0->1) x^2arcsinx/(√1-x^2) dx
let
x = siny
dx = cosy dy
x=0, y=0
x=1 , y =π/2
∫(0->1) x^2arcsinx/(√1-x^2) dx
=∫(0->π/2) y(siny)^2 dy
=(1/2)∫(0->π/2) y( 1-cos2y) dy
= (1/2) [y^2/2](0->π/2) -(1/2) ∫(0->π/2) ycos2y dy
= π^2/16 - (1/4)∫(0->π/2) y dsin2y
=π^2/16 - (1/4)[ ysin2y](0->π/2) + (1/4)∫(0->π/2) sin2y dy
=π^2/16 - (1/8)[cos2y](0->π/2)
=π^2/16 +1/4
let
x = siny
dx = cosy dy
x=0, y=0
x=1 , y =π/2
∫(0->1) x^2arcsinx/(√1-x^2) dx
=∫(0->π/2) y(siny)^2 dy
=(1/2)∫(0->π/2) y( 1-cos2y) dy
= (1/2) [y^2/2](0->π/2) -(1/2) ∫(0->π/2) ycos2y dy
= π^2/16 - (1/4)∫(0->π/2) y dsin2y
=π^2/16 - (1/4)[ ysin2y](0->π/2) + (1/4)∫(0->π/2) sin2y dy
=π^2/16 - (1/8)[cos2y](0->π/2)
=π^2/16 +1/4
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询