已知函数f(x)=|x-1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab

已知函数f(x)=|x-1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(ba).... 已知函数f(x)=|x-1|.(1)解不等式f(x)+f(x+4)≥8;(2)若|a|<1,|b|<1,且a≠0,求证:f(ab)>|a|f(ba). 展开
 我来答
小毒366
推荐于2016-04-04 · TA获得超过149个赞
知道答主
回答量:204
采纳率:0%
帮助的人:160万
展开全部
(Ⅰ)f(x)+f(x+4)=|x-1|+|x+3|=
?2x?2, x<?3
4, ?3≤x≤1 
2x+2, x>1

当x<-3时,由-2x-2≥8,解得x≤-5;
当-3≤x≤1时,f(x)≤8不成立;
当x>1时,由2x+2≥8,解得x≥3.
所以,不等式f(x)≤4的解集为{x|x≤-5,或x≥3}.
(Ⅱ)f(ab)>|a|f(
b
a
),即|ab-1|>|a-b|.
因为|a|<1,|b|<1,
所以|ab-1|2-|a-b|2=(a2b2-2ab+1)-(a2-2ab+b2)=(a2-1)(b2-1)>0,
所以|ab-1|>|a-b|,故所证不等式成立.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式