第五题 高中数学数列 过程
5个回答
展开全部
Sn=n(2n-1)an 所以S(n-1)=(n-1)(2n-3)a(n-1) (n大于等于2)否则S(n-1)无意义
Sn-S(n-1)=n(2n-1)an-(n-1)(2n-3)a(n-1)
an=n(2n-1)an-(n-1)(2n-3)a(n-1)
化简可得an/a(n-1)=(2n-3)/(2n+1)
[an/a(n-1)]*[a(n-1)/a(n-2)]*.........[a4/a3]*[a3/a2]*[a2/a1]=[(2n-3)/(2n+1)]*[(2n-5)/(2n-1)]*[(2n-7)/(2n-3)].......[5/9]*[3/7]*[1/5]=(3*1)/(2n+1)(2n-1)
即an/a1=3/(2n+1)(2n-1),因为a1=1/3 所以an=1/(2n+1)(2n-1)
所以Sn=n(2n-1)*[1/(2n+1)(2n-1)]=n/(2n+1) 此时求的是n大于等于2的情况下的式子
经检验当n=1时 S1=a1=1/3所以n=1时同样成立
所以综合上述 Sn=n/(2n+1)
Sn-S(n-1)=n(2n-1)an-(n-1)(2n-3)a(n-1)
an=n(2n-1)an-(n-1)(2n-3)a(n-1)
化简可得an/a(n-1)=(2n-3)/(2n+1)
[an/a(n-1)]*[a(n-1)/a(n-2)]*.........[a4/a3]*[a3/a2]*[a2/a1]=[(2n-3)/(2n+1)]*[(2n-5)/(2n-1)]*[(2n-7)/(2n-3)].......[5/9]*[3/7]*[1/5]=(3*1)/(2n+1)(2n-1)
即an/a1=3/(2n+1)(2n-1),因为a1=1/3 所以an=1/(2n+1)(2n-1)
所以Sn=n(2n-1)*[1/(2n+1)(2n-1)]=n/(2n+1) 此时求的是n大于等于2的情况下的式子
经检验当n=1时 S1=a1=1/3所以n=1时同样成立
所以综合上述 Sn=n/(2n+1)
展开全部
将an=Sn-S(n-1)代入得
Sn/S(n-1)=(n/n-1)*[(2n-1)/(2n+1)]
再用累乘法Sn=(Sn/Sn-1)*(Sn-1/Sn-2)*...*(S2/S1)*S1可以求出来。
Sn/S(n-1)=(n/n-1)*[(2n-1)/(2n+1)]
再用累乘法Sn=(Sn/Sn-1)*(Sn-1/Sn-2)*...*(S2/S1)*S1可以求出来。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-10-24
展开全部
[3分之1-(n+1)分之1]÷2+3分之1=2分之1-2×(n+1)分之1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
An=Sn-S(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
看不清
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询