求lim n趋向于无穷,[(1+x^n+(x^2/2)^n]^(1/n)=?(x≥0)
高等数学微积分求limn趋向于无穷,[(1+x^n+(x^2/2)^n]^(1/n)=?(x≥0)...
高等数学
微积分
求lim n趋向于无穷,[(1+x^n+(x^2/2)^n]^(1/n)=?(x≥0) 展开
微积分
求lim n趋向于无穷,[(1+x^n+(x^2/2)^n]^(1/n)=?(x≥0) 展开
1个回答
2016-11-24
展开全部
解:
(1)当0≤x≤1时,
x^n≤1,(x²/2)^n<1,于是1≤[(1+x^n+(x²/2)^n]^(1/n)≤3^(1/n)
因为lim n→∞ 3^(1/n)=1,由夹挤定理可知lim n→∞ [(1+x^n+(x²/2)^n]^(1/n)=1
(2)当1<x≤2时,
x≥x²/2,于是
x<[(1+x^n+(x²/2)^n]^(1/n)≤x(3^(1/n))
因为lim n→∞ x(3^(1/n))=x,所以lim n→∞ [(1+x^n+(x²/2)^n]^(1/n)=x
(3)当x>2时,
x<x²/2,于是
x²/2<[(1+x^n+(x²/2)^n]^(1/n)<x²/2 · (3^(1/n))
因为lim n→∞ x²/2 · (3^(1/n))=x²/2,所以lim n→∞ [(1+x^n+(x²/2)^n]^(1/n)=x²/2
综上所述,lim n→∞ [(1+x^n+(x²/2)^n]^(1/n)=(分段)
【1,0≤x≤1
【x,1<x≤2
【x²/2,x>2
(1)当0≤x≤1时,
x^n≤1,(x²/2)^n<1,于是1≤[(1+x^n+(x²/2)^n]^(1/n)≤3^(1/n)
因为lim n→∞ 3^(1/n)=1,由夹挤定理可知lim n→∞ [(1+x^n+(x²/2)^n]^(1/n)=1
(2)当1<x≤2时,
x≥x²/2,于是
x<[(1+x^n+(x²/2)^n]^(1/n)≤x(3^(1/n))
因为lim n→∞ x(3^(1/n))=x,所以lim n→∞ [(1+x^n+(x²/2)^n]^(1/n)=x
(3)当x>2时,
x<x²/2,于是
x²/2<[(1+x^n+(x²/2)^n]^(1/n)<x²/2 · (3^(1/n))
因为lim n→∞ x²/2 · (3^(1/n))=x²/2,所以lim n→∞ [(1+x^n+(x²/2)^n]^(1/n)=x²/2
综上所述,lim n→∞ [(1+x^n+(x²/2)^n]^(1/n)=(分段)
【1,0≤x≤1
【x,1<x≤2
【x²/2,x>2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询